Information Technology University of the Punjab, Lahore, Pakistan.
Wajahat Surgical Hospital, Attock, Pakistan.
Comput Biol Med. 2022 Sep;148:105879. doi: 10.1016/j.compbiomed.2022.105879. Epub 2022 Jul 14.
Retinal images acquired using fundus cameras are often visually blurred due to imperfect imaging conditions, refractive medium turbidity, and motion blur. In addition, ocular diseases such as the presence of cataracts also result in blurred retinal images. The presence of blur in retinal fundus images reduces the effectiveness of the diagnosis process of an expert ophthalmologist or a computer-aided detection/diagnosis system. In this paper, we put forward a single-shot deep image prior (DIP)-based approach for retinal image enhancement. Unlike typical deep learning-based approaches, our method does not require any training data. Instead, our DIP-based method can learn the underlying image prior while using a single degraded image. To perform retinal image enhancement, we frame it as a layer decomposition problem and investigate the use of two well-known analytical priors, i.e., dark channel prior (DCP) and bright channel prior (BCP) for atmospheric light estimation. We show that both the untrained neural networks and the pretrained neural networks can be used to generate an enhanced image while using only a single degraded image. The proposed approach is time and memory-efficient, which makes the solution feasible for real-world resource-constrained environments. We evaluate our proposed framework quantitatively on five datasets using three widely used metrics and complement that with a subjective qualitative assessment of the enhancement by two expert ophthalmologists. For instance, our method has achieved significant performance for untrained CDIPs coupled with DCP in terms of average PSNR, SSIM, and BRISQUE values of 40.41, 0.97, and 34.2, respectively, and for untrained CDIPs coupled with BCP, it achieved average PSNR, SSIM, and BRISQUE values of 40.22, 0.98, and 36.38, respectively. Our extensive experimental comparison with several competitive baselines on public and non-public proprietary datasets validates the proposed ideas and framework.
眼底相机获取的视网膜图像通常由于成像条件不理想、屈光介质混浊和运动模糊而视觉模糊。此外,白内障等眼部疾病也会导致视网膜图像模糊。视网膜眼底图像的模糊会降低专家眼科医生或计算机辅助检测/诊断系统的诊断过程的有效性。在本文中,我们提出了一种基于单次拍摄的深度图像先验(DIP)的视网膜图像增强方法。与典型的基于深度学习的方法不同,我们的方法不需要任何训练数据。相反,我们的基于 DIP 的方法可以在使用单个退化图像的同时学习潜在的图像先验。为了进行视网膜图像增强,我们将其表示为一个层分解问题,并研究了使用两种著名的分析先验,即暗通道先验(DCP)和亮通道先验(BCP)进行大气光估计的方法。我们表明,未训练的神经网络和预训练的神经网络都可以在仅使用单个退化图像的情况下生成增强后的图像。所提出的方法在时间和内存方面都具有高效性,这使得该解决方案在实际的资源受限环境中是可行的。我们使用三个广泛使用的指标在五个数据集上对我们的框架进行了定量评估,并由两位眼科专家对增强效果进行了主观定性评估。例如,我们的方法在未训练的 CDIP 与 DCP 结合的情况下在平均 PSNR、SSIM 和 BRISQUE 值方面取得了显著的性能,分别为 40.41、0.97 和 34.2,而在未训练的 CDIP 与 BCP 结合的情况下,它实现了平均 PSNR、SSIM 和 BRISQUE 值分别为 40.22、0.98 和 36.38。我们在公共和非公共专有数据集上与几个有竞争力的基线进行的广泛实验比较验证了所提出的思想和框架。