Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Biomech Model Mechanobiol. 2022 Oct;21(5):1339-1355. doi: 10.1007/s10237-022-01593-2. Epub 2022 Jul 22.
Mature arteries exhibit a preferred biomechanical state in health evidenced by a narrow range of intramural and wall shear stresses. When stresses are perturbed by changes in blood pressure or flow, homeostatic mechanisms tend to restore target values via altered contractility and/or cell and matrix turnover. In contrast, vascular disease associates with compromised homeostasis, hence we must understand mechanisms underlying mechanical homeostasis and its robustness. Here, we use a multiscale computational model wherein mechanosensitive intracellular signaling pathways drive arterial growth and remodeling. First, we identify an ensemble of cell-level parameterizations where tissue-level responses are well-regulated and adaptive to hemodynamic perturbations. The responsible mechanism is persistent multiscale negative feedback whereby mechanosensitive signaling drives mass turnover until homeostatic target stresses are reached. This demonstrates how robustness emerges despite inevitable cell and individual heterogeneity. Second, we investigate tissue-level effects of signaling node knockdowns (ATIR, ROCK, TGF[Formula: see text]RII, PDGFR, ERK1/2) and find general agreement with experimental reports of fault tolerance. Robustness against structural changes manifests via low engagement of the node under baseline stresses or compensatory multiscale feedback via upregulation of additional pathways. Third, we show how knockdowns affect collagen and smooth muscle turnover at baseline and with perturbed stresses. In several cases, basal production is not remarkably affected, but sensitivities to stress deviations, which influence feedback strength, are reduced. Such reductions can impair adaptive responses, consistent with previously reported aortic vulnerability despite grossly normal appearances. Reduced stress sensitivities thus form a candidate mechanism for how robustness is lost, enabling transitions from health towards disease.
成熟的动脉在健康状态下表现出优选的生物力学状态,这表现在壁切应力和管腔内部压力的狭窄范围。当压力因血压或流量变化而发生波动时,通过改变收缩性和/或细胞和基质的更新,体内平衡机制往往会恢复目标值。相比之下,血管疾病与体内平衡受损有关,因此我们必须了解机械体内平衡及其稳健性的潜在机制。在这里,我们使用一个多尺度计算模型,其中机械敏感的细胞内信号通路驱动动脉生长和重塑。首先,我们确定了一组细胞水平的参数化方案,这些方案使组织水平的反应得到了很好的调节,并对血流动力学扰动具有适应性。负责的机制是持久的多尺度负反馈,其中机械敏感信号会驱动质量更新,直到达到体内平衡的目标压力。这表明了尽管存在细胞和个体的异质性,稳健性是如何出现的。其次,我们研究了信号节点敲低(AT1R、ROCK、TGFβRII、PDGFR、ERK1/2)对组织水平的影响,发现与实验报告的容错性普遍一致。在基线压力下,由于节点的低参与或通过上调其他途径进行补偿性多尺度反馈,结构变化的稳健性得以显现。第三,我们展示了敲低如何影响基线和受干扰的压力下的胶原蛋白和平滑肌的更新。在几种情况下,基础产量没有明显受到影响,但对压力偏差的敏感性(影响反馈强度)降低了。这种降低会损害适应性反应,这与先前报道的主动脉脆弱性一致,尽管宏观上外观正常。因此,降低的压力敏感性构成了稳健性丧失的候选机制,使健康向疾病转变。