Suppr超能文献

深度学习在医学影像定位和方向检测中的应用。

Deep learning solution for medical image localization and orientation detection.

机构信息

SYNGO division, Siemens Medical Solutions, Malvern 19355, USA.

MR division, Siemens Healthcare, Erlangen 91052, Germany.

出版信息

Med Image Anal. 2022 Oct;81:102529. doi: 10.1016/j.media.2022.102529. Epub 2022 Jul 6.

Abstract

Magnetic Resonance (MR) imaging plays an important role in medical diagnosis and biomedical research. Due to the high in-slice resolution and low through-slice resolution nature of MR imaging, the usefulness of the reconstruction highly depends on the positioning of the slice group. Traditional clinical workflow relies on time-consuming manual adjustment that cannot be easily reproduced. Automation of this task can therefore bring important benefits in terms of accuracy, speed and reproducibility. Current auto-slice-positioning methods rely on automatically detected landmarks to derive the positioning, and previous studies suggest that a large, redundant set of landmarks are required to achieve robust results. However, a costly data curation procedure is needed to generate training labels for those landmarks, and the results can still be highly sensitive to landmark detection errors. More importantly, a set of anatomical landmark locations are not naturally produced during the standard clinical workflow, which makes online learning impossible. To address these limitations, we propose a novel framework for auto-slice-positioning that focuses on localizing the canonical planes within a 3D volume. The proposed framework consists of two major steps. A multi-resolution region proposal network is first used to extract a volume-of-interest, after which a V-net-like segmentation network is applied to segment the orientation planes. Importantly, our algorithm also includes a Performance Measurement Index as an indication of the algorithm's confidence. We evaluate the proposed framework on both knee and shoulder MR scans. Our method outperforms state-of-the-art automatic positioning algorithms in terms of accuracy and robustness.

摘要

磁共振(MR)成像是医学诊断和生物医学研究中的重要手段。由于 MR 成像的切片内分辨率高而切片间分辨率低,因此重建的效果高度依赖于切片组的定位。传统的临床工作流程依赖于耗时的手动调整,且难以重现。因此,该任务的自动化可以在准确性、速度和可重复性方面带来重要的好处。目前的自动切片定位方法依赖于自动检测的地标来推导定位,之前的研究表明,需要大量冗余的地标才能获得稳健的结果。然而,为这些地标生成训练标签需要进行昂贵的数据整理过程,并且结果仍然高度敏感地标检测错误。更重要的是,在标准的临床工作流程中,不会自然生成一组解剖学地标位置,这使得在线学习变得不可能。为了解决这些限制,我们提出了一种新的自动切片定位框架,该框架专注于定位 3D 体数据中的标准平面。该框架由两个主要步骤组成。首先,使用多分辨率区域建议网络提取感兴趣的区域,然后应用 V 网样的分割网络分割定向平面。重要的是,我们的算法还包括性能测量指数作为算法置信度的指示。我们在膝关节和肩关节 MR 扫描上评估了所提出的框架。我们的方法在准确性和鲁棒性方面优于最先进的自动定位算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验