Suppr超能文献

MGACA-Net:一种基于深度学习的新型多尺度引导注意力和上下文聚合方法,用于在MRI图像中定位膝关节前交叉韧带撕裂区域

MGACA-Net: a novel deep learning based multi-scale guided attention and context aggregation for localization of knee anterior cruciate ligament tears region in MRI images.

作者信息

Awan Mazhar Javed, Mohd Rahim Mohd Shafry, Salim Naomie, Nobanee Haitham, Asif Ahsen Ali, Attiq Muhammad Ozair

机构信息

Faculty of Computing, Universiti Teknologi Malaysia, Johar Bahru, JOHOR, Malaysia.

Department of Software Engineering, University of Management & Technology, Lahore, Punjab, Pakistan.

出版信息

PeerJ Comput Sci. 2023 Jul 13;9:e1483. doi: 10.7717/peerj-cs.1483. eCollection 2023.

Abstract

Anterior cruciate ligament (ACL) tears are a common knee injury that can have serious consequences and require medical intervention. Magnetic resonance imaging (MRI) is the preferred method for ACL tear diagnosis. However, manual segmentation of the ACL in MRI images is prone to human error and can be time-consuming. This study presents a new approach that uses deep learning technique for localizing the ACL tear region in MRI images. The proposed multi-scale guided attention-based context aggregation (MGACA) method applies attention mechanisms at different scales within the DeepLabv3+ architecture to aggregate context information and achieve enhanced localization results. The model was trained and evaluated on a dataset of 917 knee MRI images, resulting in 15265 slices, obtaining state-of-the-art results with accuracy scores of 98.63%, intersection over union (IOU) scores of 95.39%, Dice coefficient scores (DCS) of 97.64%, recall scores of 97.5%, precision scores of 98.21%, and F1 Scores of 97.86% on validation set data. Moreover, our method performed well in terms of loss values, with binary cross entropy combined with Dice loss (BCE_Dice_loss) and Dice_loss values of 0.0564 and 0.0236, respectively, on the validation set. The findings suggest that MGACA provides an accurate and efficient solution for automating the localization of ACL in knee MRI images, surpassing other state-of-the-art models in terms of accuracy and loss values. However, in order to improve robustness of the approach and assess its performance on larger data sets, further research is needed.

摘要

前交叉韧带(ACL)撕裂是一种常见的膝关节损伤,可能会产生严重后果并需要医疗干预。磁共振成像(MRI)是诊断ACL撕裂的首选方法。然而,在MRI图像中手动分割ACL容易出现人为误差且可能耗时。本研究提出了一种新方法,该方法使用深度学习技术在MRI图像中定位ACL撕裂区域。所提出的基于多尺度引导注意力的上下文聚合(MGACA)方法在DeepLabv3+架构内的不同尺度上应用注意力机制,以聚合上下文信息并实现增强的定位结果。该模型在包含917张膝关节MRI图像(共15265个切片)的数据集上进行训练和评估,在验证集数据上获得了98.63%的准确率、95.39%的交并比(IOU)分数、97.64%的骰子系数分数(DCS)、97.5%的召回率分数、98.21%的精确率分数以及97.86%的F1分数等领先结果。此外,我们的方法在损失值方面表现良好,在验证集上二元交叉熵与骰子损失(BCE_Dice_loss)和骰子损失(Dice_loss)值分别为0.0564和0.0236。研究结果表明,MGACA为膝关节MRI图像中ACL的自动定位提供了一种准确且高效的解决方案,在准确率和损失值方面超越了其他领先模型。然而,为了提高该方法的鲁棒性并评估其在更大数据集上的性能,还需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/253f/10403161/bbaedde42bcd/peerj-cs-09-1483-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验