Suppr超能文献

深度学习应用检测新型冠状病毒关键酶抑制剂。

Deep learning application detecting SARS-CoV-2 key enzymes inhibitors.

作者信息

Benarous Leila, Benarous Khedidja, Muhammad Ghulam, Ali Zulfiqar

机构信息

LIM Laboratory (Laboratoire d'informatique Et de Mathématique), Department of Computer Science, Faculty of Science, University of Amar Telidji, Laghouat, Algeria.

LISSI-Tinc-NET Laboratory, University of Paris-Est Creteil, 94400 Vitry-sur-Seine, France.

出版信息

Cluster Comput. 2023;26(2):1169-1180. doi: 10.1007/s10586-022-03656-6. Epub 2022 Jul 19.

Abstract

The fast spread of the COVID-19 over the world pressured scientists to find its cures. Especially, with the disastrous results, it engendered from human life losses to long-term impacts on infected people's health and the huge financial losses. In addition to the massive efforts made by researchers and medicals on finding safe, smart, fast, and efficient methods to accurately make an early diagnosis of the COVID-19. Some researchers focused on finding drugs to treat the disease and its symptoms, others worked on creating effective vaccines, while several concentrated on finding inhibitors for the key enzymes of the virus, to reduce its spreading and reproduction inside the human body. These enzymes' inhibitors are usually found in aliments, plants, fungi, or even in some drugs. Since these inhibitors slow and halt the replication of the virus in the human body, they can help fight it at an early stage saving the patient from death risk. Moreover, if the human body's immune system gets rid of the virus at the early stage it can be spared from the disastrous sequels it may leave inside the patient's body. Our research aims to find aliments and plants that are rich in these inhibitors. In this paper, we developed a deep learning application that is trained with various aliments, plants, and drugs to detect if a component contains SARS-CoV-2 key inhibitor(s) intending to help them find more sources containing these inhibitors. The application is trained to identify various sources rich in thirteen coronavirus-2 key inhibitors. The sources are currently just aliments, plants, and seeds and the identification is done by their names.

摘要

新冠病毒在全球的迅速传播迫使科学家们寻找其治疗方法。特别是,它造成了灾难性后果,从人员生命损失到对感染者健康的长期影响以及巨大的经济损失。除了研究人员和医护人员为寻找安全、智能、快速且有效的方法来准确早期诊断新冠病毒付出的巨大努力外,一些研究人员专注于寻找治疗该疾病及其症状的药物,另一些人致力于研发有效的疫苗,还有一些人则集中精力寻找该病毒关键酶的抑制剂,以减少其在人体内的传播和繁殖。这些酶的抑制剂通常存在于食物、植物、真菌甚至某些药物中。由于这些抑制剂能减缓并阻止病毒在人体内的复制,它们可以在早期帮助对抗病毒,使患者免于死亡风险。此外,如果人体免疫系统在早期清除病毒,患者可以避免病毒可能在其体内留下的灾难性后遗症。我们的研究旨在寻找富含这些抑制剂的食物和植物。在本文中,我们开发了一种深度学习应用程序,该程序用各种食物、植物和药物进行训练,以检测一种成分是否含有新冠病毒关键抑制剂,旨在帮助他们找到更多含有这些抑制剂的来源。该应用程序经过训练,可识别富含13种新冠病毒关键抑制剂的各种来源。目前这些来源仅为食物、植物和种子,识别是通过它们的名称进行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd42/9295888/376b1a4b3ef2/10586_2022_3656_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验