Suppr超能文献

基于肝癌相关成纤维细胞激活评分系统的新型人工神经网络预后模型。

A Novel Artificial Neural Network Prognostic Model Based on a Cancer-Associated Fibroblast Activation Score System in Hepatocellular Carcinoma.

机构信息

Cancer Center, West China Hospital, Sichuan University, Chengdu, China.

West China School of Medicine, West China Hospital, Chengdu, China.

出版信息

Front Immunol. 2022 Jul 8;13:927041. doi: 10.3389/fimmu.2022.927041. eCollection 2022.

Abstract

INTRODUCTION

Hepatocellular carcinoma (HCC) ranks fourth as the most common cause of cancer-related death. It is vital to identify the mechanism of progression and predict the prognosis for patients with HCC. Previous studies have found that cancer-associated fibroblasts (CAFs) promote tumor proliferation and immune exclusion. However, the information about CAF-related genes is still elusive.

METHODS

The data were obtained from The Cancer Genome Atlas, International Cancer Genome Consortium, and Gene Expression Omnibus databases. On the basis of single-cell transcriptome and ligand-receptor interaction analysis, CAF-related genes were selected. By performing Cox regression and random forest, we filtered 12 CAF-related prognostic genes for the construction of the ANN model based on the CAF activation score (CAS). Then, functional, immune, mutational, and clinical analyses were performed.

RESULTS

We constructed a novel ANN prognostic model based on 12 CAF-related prognostic genes. Cancer-related pathways were enriched, and higher activated cell crosstalk was identified in high-CAS samples. High immune activity was observed in high-CAS samples. We detected three differentially mutated genes (, , and ) between high- and low-CAS samples. In clinical analyses, we constructed a nomogram to predict the prognosis of patients with HCC. 5-Fluorouracil had higher sensitivity in high-CAS samples than in low-CAS samples. Moreover, some small-molecule drugs and the immune response were predicted.

CONCLUSION

We constructed a novel ANN model based on CAF-related genes. We revealed information about the ANN model through functional, mutational, immune, and clinical analyses.

摘要

简介

肝细胞癌(HCC)是第四大常见的癌症相关死亡原因。识别其进展机制并预测 HCC 患者的预后至关重要。先前的研究发现,癌症相关成纤维细胞(CAFs)促进肿瘤增殖和免疫排斥。然而,CAF 相关基因的信息仍然难以捉摸。

方法

从癌症基因组图谱(TCGA)、国际癌症基因组联盟(ICGC)和基因表达综合数据库(GEO)中获取数据。基于单细胞转录组和配体-受体相互作用分析,选择 CAF 相关基因。通过 Cox 回归和随机森林分析,我们根据 CAF 激活评分(CAS)筛选了 12 个 CAF 相关预后基因,构建 ANN 模型。然后进行功能、免疫、突变和临床分析。

结果

我们构建了一个基于 12 个 CAF 相关预后基因的新型 ANN 预后模型。癌症相关途径被富集,并且在高-CAS 样本中观察到更高的激活细胞串扰。高免疫活性在高-CAS 样本中被检测到。我们在高-CAS 和低-CAS 样本之间检测到三个差异突变基因(、和)。在临床分析中,我们构建了一个列线图来预测 HCC 患者的预后。与低-CAS 样本相比,在高-CAS 样本中 5-氟尿嘧啶具有更高的敏感性。此外,还预测了一些小分子药物和免疫反应。

结论

我们构建了一个基于 CAF 相关基因的新型 ANN 模型。我们通过功能、突变、免疫和临床分析揭示了 ANN 模型的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验