Claus Abigail, Sweeney Allison, Sankepalle Deeksha M, Li Brian, Wong Daniel, Xavierselvan Marvin, Mallidi Srivalleesha
Department of Biomedical Engineering, Tufts University, Medford, MA, United States.
Front Oncol. 2022 Jul 7;12:915319. doi: 10.3389/fonc.2022.915319. eCollection 2022.
Pancreatic cancer is a disease with an incredibly poor survival rate. As only about 20% of patients are eligible for surgical resection, neoadjuvant treatments that can relieve symptoms and shrink tumors for surgical resection become critical. Many forms of treatments rely on increased vulnerability of cancerous cells, but tumors or regions within the tumors that may be hypoxic could be drug resistant. Particularly for neoadjuvant therapies such as the tyrosine kinase inhibitors utilized to shrink tumors, it is critical to monitor changes in vascular function and hypoxia to predict treatment efficacy. Current clinical imaging modalities used to obtain structural and functional information regarding hypoxia or oxygen saturation (StO) do not provide sufficient depth penetration or require the use of exogenous contrast agents. Recently, ultrasound-guided photoacoustic imaging (US-PAI) has garnered significant popularity, as it can noninvasively provide multiparametric information on tumor vasculature and function without the need for contrast agents. Here, we built upon existing literature on US-PAI and demonstrate the importance of changes in StO values to predict treatment response, particularly tumor growth rate, when the outcomes are suboptimal. Specifically, we image xenograft mouse models of pancreatic adenocarcinoma treated with suboptimal doses of a tyrosine kinase inhibitor cabozantinib. We utilize the US-PAI data to develop a multivariate regression model that demonstrates that a therapy-induced reduction in tumor growth rate can be predicted with 100% positive predictive power and a moderate (58.33%) negative predictive power when a combination of pretreatment tumor volume and changes in StO values pretreatment and immediately posttreatment was employed. Overall, our study indicates that US-PAI has the potential to provide label-free surrogate imaging biomarkers that can predict tumor growth rate in suboptimal therapy.
胰腺癌是一种生存率极低的疾病。由于只有约20%的患者适合手术切除,因此能够缓解症状并缩小肿瘤以便进行手术切除的新辅助治疗变得至关重要。许多治疗方式依赖于增加癌细胞的易损性,但肿瘤或肿瘤内可能缺氧的区域可能具有耐药性。特别是对于用于缩小肿瘤的酪氨酸激酶抑制剂等新辅助疗法,监测血管功能和缺氧情况的变化以预测治疗效果至关重要。目前用于获取有关缺氧或血氧饱和度(StO)的结构和功能信息的临床成像模式,要么无法提供足够的深度穿透,要么需要使用外源性造影剂。最近,超声引导光声成像(US-PAI)受到了广泛关注,因为它可以在无需造影剂的情况下无创地提供关于肿瘤血管系统和功能的多参数信息。在此,我们基于关于US-PAI的现有文献,证明了当治疗效果不理想时,StO值的变化对于预测治疗反应,特别是肿瘤生长速率的重要性。具体而言,我们对用次优剂量的酪氨酸激酶抑制剂卡博替尼治疗的胰腺腺癌异种移植小鼠模型进行成像。我们利用US-PAI数据开发了一个多元回归模型,该模型表明,当采用治疗前肿瘤体积以及治疗前和治疗后即刻StO值的变化相结合时,可以以100%的阳性预测能力和中等程度(58.33%)的阴性预测能力预测治疗引起的肿瘤生长速率降低。总体而言,我们的研究表明,US-PAI有潜力提供无标记的替代成像生物标志物,可预测次优治疗中的肿瘤生长速率。