Suppr超能文献

网络信息约束下的分裂池测试分配

Network-Informed Constrained Divisive Pooled Testing Assignments.

作者信息

Sewell Daniel K

机构信息

Department of Biostatistics, University of Iowa, Iowa City, IA, United States.

出版信息

Front Big Data. 2022 Jul 8;5:893760. doi: 10.3389/fdata.2022.893760. eCollection 2022.

Abstract

Frequent universal testing in a finite population is an effective approach to preventing large infectious disease outbreaks. Yet when the target group has many constituents, this strategy can be cost prohibitive. One approach to alleviate the resource burden is to group multiple individual tests into one unit in order to determine if further tests at the individual level are necessary. This approach, referred to as a group testing or pooled testing, has received much attention in finding the minimum cost pooling strategy. Existing approaches, however, assume either independence or very simple dependence structures between individuals. This assumption ignores the fact that in the context of infectious diseases there is an underlying transmission network that connects individuals. We develop a constrained divisive hierarchical clustering algorithm that assigns individuals to pools based on the contact patterns between individuals. In a simulation study based on real networks, we show the benefits of using our proposed approach compared to random assignments even when the network is imperfectly measured and there is a high degree of missingness in the data.

摘要

在有限人群中进行频繁的普遍检测是预防大规模传染病爆发的有效方法。然而,当目标群体有许多成员时,这种策略可能成本过高。减轻资源负担的一种方法是将多个个体检测组合成一个单元,以确定是否有必要在个体层面进行进一步检测。这种方法被称为分组检测或混合检测,在寻找最小成本混合策略方面受到了广泛关注。然而,现有方法要么假设个体之间相互独立,要么假设个体之间的依赖结构非常简单。这种假设忽略了在传染病背景下存在连接个体的潜在传播网络这一事实。我们开发了一种约束分裂层次聚类算法,该算法根据个体之间的接触模式将个体分配到不同的组中。在基于真实网络的模拟研究中,我们表明,即使网络测量不完美且数据存在高度缺失,使用我们提出的方法比随机分配更有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/197b/9304576/2e361110f763/fdata-05-893760-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验