Suppr超能文献

变心:心力衰竭中小非编码 RNA 的表观转录组学。

Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure.

机构信息

Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.

Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

Curr Heart Fail Rep. 2022 Oct;19(5):255-266. doi: 10.1007/s11897-022-00561-2. Epub 2022 Jul 25.

Abstract

PURPOSE OF REVIEW

Small non-coding RNAs regulate gene expression and are highly implicated in heart failure. Recently, an additional level of post-transcriptional regulation has been identified, referred to as the epitranscriptome, which encompasses the body of post-transcriptional modifications that are placed on RNA molecules. In this review, we summarize the current knowledge on the small non-coding RNA epitranscriptome in heart failure.

RECENT FINDINGS

With the rise of new methods to study RNA modifications, epitranscriptome research has begun to take flight. Over the past 3 years, the number of publications on the epitranscriptome in heart failure has significantly increased, and we expect many more highly relevant publications to come out over the next few years. Currently, at least six modifications on small non-coding RNAs have been investigated in heart failure-relevant studies, namely N6-adenosine, N5-cytosine and N7-guanosine methylation, 2'-O-ribose-methylation, adenosine-to-inosine editing, and isomiRs. Their potential role in heart failure is discussed.

摘要

目的综述

小非编码 RNA 调节基因表达,并高度参与心力衰竭。最近,已经确定了另一种转录后调控水平,称为表观转录组,它包含了对 RNA 分子进行的各种转录后修饰。在这篇综述中,我们总结了心力衰竭中小非编码 RNA 表观转录组的最新知识。

最新发现

随着研究 RNA 修饰的新方法的出现,表观转录组研究开始兴起。在过去的 3 年中,心力衰竭中关于表观转录组的出版物数量显著增加,我们预计在未来几年内还会有更多高度相关的出版物问世。目前,至少有六种小非编码 RNA 的修饰已在与心力衰竭相关的研究中进行了研究,即 N6-腺嘌呤、N5-胞嘧啶和 N7-鸟嘌呤甲基化、2'-O-核糖甲基化、腺苷到肌苷编辑和同工型。讨论了它们在心力衰竭中的潜在作用。

相似文献

1
Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure.
Curr Heart Fail Rep. 2022 Oct;19(5):255-266. doi: 10.1007/s11897-022-00561-2. Epub 2022 Jul 25.
2
The epitranscriptome landscape of small noncoding RNAs in stem cells.
Stem Cells. 2020 Oct 1;38(10):1216-1228. doi: 10.1002/stem.3233. Epub 2020 Jun 29.
3
RNA modifications in aging-associated cardiovascular diseases.
Aging (Albany NY). 2022 Sep 29;14(19):8110-8136. doi: 10.18632/aging.204311.
4
The Epitranscriptome and Innate Immunity.
PLoS Genet. 2015 Dec 10;11(12):e1005687. doi: 10.1371/journal.pgen.1005687. eCollection 2015 Dec.
5
Deciphering the Epitranscriptome in Cancer.
Trends Cancer. 2018 Mar;4(3):207-221. doi: 10.1016/j.trecan.2018.01.006. Epub 2018 Feb 21.
6
Cracking the epitranscriptome.
RNA. 2016 Feb;22(2):169-74. doi: 10.1261/rna.054502.115.
7
The dynamic epitranscriptome: N6-methyladenosine and gene expression control.
Nat Rev Mol Cell Biol. 2014 May;15(5):313-26. doi: 10.1038/nrm3785. Epub 2014 Apr 9.
8
The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs.
Int J Mol Sci. 2017 Nov 10;18(11):2387. doi: 10.3390/ijms18112387.
9
RNA modifications and cancer.
RNA Biol. 2020 Nov;17(11):1560-1575. doi: 10.1080/15476286.2020.1722449. Epub 2020 Feb 7.
10
RNA modifications in cardiovascular diseases, the potential therapeutic targets.
Life Sci. 2021 Aug 1;278:119565. doi: 10.1016/j.lfs.2021.119565. Epub 2021 May 6.

引用本文的文献

1
Validation of tRNA-derived fragments as diagnostic biomarkers in suspected acute stroke; limitations in analysis and quantification methods.
Mol Ther Nucleic Acids. 2025 May 5;36(2):102553. doi: 10.1016/j.omtn.2025.102553. eCollection 2025 Jun 10.
2
Association between microRNA expression and risk of male idiopathic infertility in Iraq.
Rev Assoc Med Bras (1992). 2023 Sep 18;69(9):e20230341. doi: 10.1590/1806-9282.20230341. eCollection 2023.

本文引用的文献

1
Loss of mA Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression.
Front Cardiovasc Med. 2022 Feb 28;9:852775. doi: 10.3389/fcvm.2022.852775. eCollection 2022.
2
Noncoding RNAs in Cardiac Hypertrophy and Heart Failure.
Cells. 2022 Feb 23;11(5):777. doi: 10.3390/cells11050777.
3
N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4.
Int J Mol Sci. 2022 Jan 19;23(3):1057. doi: 10.3390/ijms23031057.
5
Cardiac expression of microRNA-7 is associated with adverse cardiac remodeling.
Sci Rep. 2021 Nov 10;11(1):22018. doi: 10.1038/s41598-021-00778-6.
8
ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity.
Mol Ther. 2022 Jan 5;30(1):400-414. doi: 10.1016/j.ymthe.2021.07.004. Epub 2021 Jul 16.
9
N-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles.
Dev Cell. 2021 Mar 8;56(5):702-715.e8. doi: 10.1016/j.devcel.2021.01.015. Epub 2021 Feb 19.
10
Remodeling of the mA landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy.
J Mol Cell Cardiol. 2021 Feb;151:46-55. doi: 10.1016/j.yjmcc.2020.11.002. Epub 2020 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验