State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China.
BMC Plant Biol. 2022 Jul 26;22(1):369. doi: 10.1186/s12870-022-03767-7.
Cold is one of the main abiotic stresses that severely affect plant growth and development, and crop productivity as well. Transcriptional changes during cold stress have already been intensively studied in various plant species. However, the gene networks involved in the regulation of differential cold tolerance between tobacco varieties with contrasting cold resistance are quite limited.
Here, we conducted multiple time-point transcriptomic analyses using Tai tobacco (TT, cold susceptibility) and Yan tobacco (YT, cold resistance) with contrasting cold responses. We identified similar DEGs in both cultivars after comparing with the corresponding control (without cold treatment), which were mainly involved in response to abiotic stimuli, metabolic processes, kinase activities. Through comparison of the two cultivars at each time point, in contrast to TT, YT had higher expression levels of the genes responsible for environmental stresses. By applying Weighted Gene Co-Expression Network Analysis (WGCNA), we identified two main modules: the pink module was similar while the brown module was distinct between the two cultivars. Moreover, we obtained 100 hub genes, including 11 important transcription factors (TFs) potentially involved in cold stress, 3 key TFs in the brown module and 8 key TFs in the pink module. More importantly, according to the genetic regulatory networks (GRNs) between TFs and other genes or TFs by using GENIE3, we identified 3 TFs (ABI3/VP1, ARR-B and WRKY) mainly functioning in differential cold responses between two cultivars, and 3 key TFs (GRAS, AP2-EREBP and C2H2) primarily involved in cold responses.
Collectively, our study provides valuable resources for transcriptome- based gene network studies of cold responses in tobacco. It helps to reveal how key cold responsive TFs or other genes are regulated through network. It also helps to identify the potential key cold responsive genes for the genetic manipulation of tobacco cultivars with enhanced cold tolerance in the future.
冷是影响植物生长和发育以及作物生产力的主要非生物胁迫因素之一。在不同植物物种中,已对冷胁迫过程中的转录变化进行了深入研究。然而,涉及具有不同耐寒性的烟草品种之间差异耐寒性调节的基因网络相当有限。
在这里,我们使用具有不同冷响应的台湾烟草(TT,易感性)和延烟草(YT,抗性)进行了多次时间点转录组分析。我们通过将对照(未经冷处理)与对照进行比较,在两个品种中都鉴定出了相似的 DEGs,这些基因主要参与对非生物刺激、代谢过程、激酶活性的反应。通过在每个时间点比较两个品种,与 TT 相比,YT 具有更高水平的负责环境胁迫的基因表达。通过应用加权基因共表达网络分析(WGCNA),我们鉴定出两个主要模块:粉红色模块在两个品种之间相似,而棕色模块则不同。此外,我们获得了 100 个枢纽基因,包括 11 个可能参与冷胁迫的重要转录因子(TFs)、棕色模块中的 3 个关键 TF 和粉红色模块中的 8 个关键 TF。更重要的是,根据 TF 和其他基因或 TF 之间的遗传调控网络(GRNs),通过 GENIE3,我们鉴定出 3 个 TF(ABI3/VP1、ARR-B 和 WRKY)主要在两个品种之间的差异冷响应中起作用,以及 3 个关键 TF(GRAS、AP2-EREBP 和 C2H2)主要参与冷响应。
总的来说,我们的研究为烟草冷响应的基于转录组的基因网络研究提供了有价值的资源。它有助于揭示关键冷响应 TF 或其他基因如何通过网络进行调节。它还有助于识别潜在的关键冷响应基因,以便在未来对具有增强耐寒性的烟草品种进行遗传操作。