Suppr超能文献

基于集成学习算法和特征选择的优化组合预测乳腺癌患者淋巴水肿的发生。

Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection.

机构信息

The Computer Engineering Department, Rasht Branch, Islamic Azad University, Rasht, Iran.

Shariati Hospital, Tehran University of Medical Science (TUMS), Tehran, Iran.

出版信息

BMC Med Inform Decis Mak. 2022 Jul 25;22(1):195. doi: 10.1186/s12911-022-01937-z.

Abstract

BACKGROUND

Breast cancer-related lymphedema is one of the most important complications that adversely affect patients' quality of life. Lymphedema can be managed if its risk factors are known and can be modified. This study aimed to select an appropriate model to predict the risk of lymphedema and determine the factors affecting lymphedema.

METHOD

This study was conducted on data of 970 breast cancer patients with lymphedema referred to a lymphedema clinic. This study was designed in two phases: developing an appropriate model to predict the risk of lymphedema and identifying the risk factors. The first phase included data preprocessing, optimizing feature selection for each base learner by the Genetic algorithm, optimizing the combined ensemble learning method, and estimating fitness function for evaluating an appropriate model. In the second phase, the influential variables were assessed and introduced based on the average number of variables in the output of the proposed algorithm.

RESULT

Once the sensitivity and accuracy of the algorithms were evaluated and compared, the Support Vector Machine algorithm showed the highest sensitivity and was found to be the superior model for predicting lymphedema. Meanwhile, the combined method had an accuracy coefficient of 91%. The extracted significant features in the proposed model were the number of lymph nodes to the number of removed lymph nodes ratio (68%), feeling of heaviness (67%), limited range of motion in the affected limb (65%), the number of the removed lymph nodes ( 64%), receiving radiotherapy (63%), misalignment of the dominant and the involved limb (62%), presence of fibrotic tissue (62%), type of surgery (62%), tingling sensation (62%), the number of the involved lymph nodes (61%), body mass index (61%), the number of chemotherapy sessions (60%), age (58%), limb injury (53%), chemotherapy regimen (53%), and occupation (50%).

CONCLUSION

Applying a combination of ensemble learning approach with the selected classification algorithms, feature selection, and optimization by Genetic algorithm, Lymphedema can be predicted with appropriate accuracy. Developing applications by effective variables to determine the risk of lymphedema can help lymphedema clinics choose the proper preventive and therapeutic method.

摘要

背景

乳腺癌相关淋巴水肿是影响患者生活质量的最重要的并发症之一。如果了解其危险因素并可以加以改变,就可以对其进行管理。本研究旨在选择合适的模型来预测淋巴水肿的风险,并确定影响淋巴水肿的因素。

方法

本研究对 970 例患有淋巴水肿的乳腺癌患者的数据进行了分析,这些患者均被转诊至淋巴水肿诊所。本研究分两个阶段进行:开发一种合适的模型来预测淋巴水肿的风险,并确定风险因素。第一阶段包括数据预处理、通过遗传算法对每个基础学习者的特征选择进行优化、优化组合集成学习方法、以及估计用于评估合适模型的适应度函数。在第二阶段,根据所提出算法输出的平均变量数量,评估和引入有影响的变量。

结果

一旦对算法的敏感性和准确性进行了评估和比较,支持向量机算法就表现出了最高的敏感性,被认为是预测淋巴水肿的优越模型。同时,组合方法的准确性系数为 91%。在所提出模型中提取的显著特征是:淋巴结数量与去除的淋巴结数量的比值(68%)、沉重感(67%)、受累肢体活动范围受限(65%)、去除的淋巴结数量(64%)、接受放疗(63%)、优势肢体和受累肢体的不对准(62%)、纤维化组织的存在(62%)、手术类型(62%)、刺痛感(62%)、受累淋巴结的数量(61%)、体重指数(61%)、化疗次数(60%)、年龄(58%)、肢体损伤(53%)、化疗方案(53%)和职业(50%)。

结论

应用集成学习方法与选定的分类算法相结合,通过遗传算法进行特征选择和优化,可以适当提高预测淋巴水肿的准确性。通过有效的变量开发应用程序来确定淋巴水肿的风险,可以帮助淋巴水肿诊所选择适当的预防和治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a908/9310496/d579af315364/12911_2022_1937_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验