Suppr超能文献

相似文献

1
Machine learning for detection of lymphedema among breast cancer survivors.
Mhealth. 2018 May 29;4:17. doi: 10.21037/mhealth.2018.04.02. eCollection 2018.
2
Developing and validating a prediction model for lymphedema detection in breast cancer survivors.
Eur J Oncol Nurs. 2021 Oct;54:102023. doi: 10.1016/j.ejon.2021.102023. Epub 2021 Aug 31.
3
Development of predictive models for lymphedema by using blood tests and therapy data.
Sci Rep. 2023 Nov 13;13(1):19720. doi: 10.1038/s41598-023-46567-1.
4
mHealth self-care interventions: managing symptoms following breast cancer treatment.
Mhealth. 2016 Jul;2. doi: 10.21037/mhealth.2016.07.03. Epub 2016 Jul 22.
5
Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.
Curr Med Imaging. 2020;16(6):703-710. doi: 10.2174/1573405615666190801121506.
6
Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
Arch Osteoporos. 2020 Oct 23;15(1):169. doi: 10.1007/s11657-020-00802-8.
10
Predicting Health Material Accessibility: Development of Machine Learning Algorithms.
JMIR Med Inform. 2021 Sep 1;9(9):e29175. doi: 10.2196/29175.

引用本文的文献

1
Cross-Cultural Adaptation of the Breast Cancer and Lymphedema Symptom Experience Index in Bengali.
J Transcult Nurs. 2025 Jun 28;36(5):10436596251345338. doi: 10.1177/10436596251345338.
2
MRI-based artificial intelligence models for post-neoadjuvant surgery personalization in breast cancer: a narrative review of evidence from Western Pacific.
Lancet Reg Health West Pac. 2024 Dec 6;57:101254. doi: 10.1016/j.lanwpc.2024.101254. eCollection 2025 Apr.
3
Using artificial intelligence to predict patient outcomes from patient-reported outcome measures: a scoping review.
Health Qual Life Outcomes. 2025 Apr 11;23(1):37. doi: 10.1186/s12955-025-02365-z.
5
Artificial Intelligence and Breast Cancer Management: From Data to the Clinic.
Cancer Innov. 2025 Feb 20;4(2):e159. doi: 10.1002/cai2.159. eCollection 2025 Apr.
6
Lymphatic pain in breast cancer survivors: An overview of the current evidence and recommendations.
Women Child Nurs. 2024 Jun;2(2):33-38. doi: 10.1016/j.wcn.2024.04.001. Epub 2024 Jul 1.
7
The usefulness of artificial intelligence in breast reconstruction: a systematic review.
Breast Cancer. 2024 Jul;31(4):562-571. doi: 10.1007/s12282-024-01582-6. Epub 2024 Apr 15.
8
Use of artificial intelligence in breast surgery: a narrative review.
Gland Surg. 2024 Mar 27;13(3):395-411. doi: 10.21037/gs-23-414. Epub 2024 Mar 22.

本文引用的文献

1
mHealth self-care interventions: managing symptoms following breast cancer treatment.
Mhealth. 2016 Jul;2. doi: 10.21037/mhealth.2016.07.03. Epub 2016 Jul 22.
2
Precision assessment of heterogeneity of lymphedema phenotype, genotypes and risk prediction.
Breast. 2016 Oct;29:231-40. doi: 10.1016/j.breast.2016.06.023. Epub 2016 Jul 22.
3
Symptom report in detecting breast cancer-related lymphedema.
Breast Cancer (Dove Med Press). 2015 Oct 15;7:345-52. doi: 10.2147/BCTT.S87854. eCollection 2015.
4
Putting evidence into practice: cancer-related lymphedema.
Clin J Oncol Nurs. 2014;18 Suppl:68-79. doi: 10.1188/14.CJON.S3.68-79.
5
Proactive approach to lymphedema risk reduction: a prospective study.
Ann Surg Oncol. 2014 Oct;21(11):3481-9. doi: 10.1245/s10434-014-3761-z. Epub 2014 May 9.
7
Trends in risk reduction practices for the prevention of lymphedema in the first 12 months after breast cancer surgery.
J Am Coll Surg. 2013 Mar;216(3):380-9; quiz 511-3. doi: 10.1016/j.jamcollsurg.2012.11.004. Epub 2012 Dec 21.
8
Psychosocial impact of lymphedema: a systematic review of literature from 2004 to 2011.
Psychooncology. 2013 Jul;22(7):1466-84. doi: 10.1002/pon.3201. Epub 2012 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验