Suppr超能文献

学习在抗体药物研发中避免选择什么。

Learning what not to select for in antibody drug discovery.

机构信息

Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland.

出版信息

Cell Rep Methods. 2022 Jul 18;2(7):100258. doi: 10.1016/j.crmeth.2022.100258.

Abstract

Identifying antibodies with high affinity and target specificity is crucial for drug discovery and development; however, filtering out antibody candidates with nonspecific or polyspecific binding profiles is also important. In this issue of , Saksena et al. report a computational counterselection method combining deep sequencing and machine learning for identifying nonspecific antibody candidates and demonstrate that it has advantages over more established molecular counterselection methods.

摘要

鉴定具有高亲和力和靶向特异性的抗体对于药物发现和开发至关重要;然而,筛选出具有非特异性或多特异性结合谱的抗体候选物也很重要。在本期的 中,Saksena 等人报告了一种结合深度测序和机器学习的计算反筛选方法,用于鉴定非特异性抗体候选物,并证明其优于更成熟的分子反筛选方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/9308151/e9e84e8c5ebf/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验