Tsinghua University, Tsinghua-Berkeley Shenzhen Institute, Beijing, China, China.
Tsinghua University, Department of Automation, Beijing, China, China.
J Biomed Opt. 2022 Jul;27(7). doi: 10.1117/1.JBO.27.7.076501.
Light-field microscopy has achieved success in various applications of life sciences that require high-speed volumetric imaging. However, existing light-field reconstruction algorithms degrade severely in low-light conditions, and the deconvolution process is time-consuming.
This study aims to develop a noise robustness phase-space deconvolution method with low computational costs.
We reformulate the light-field phase-space deconvolution model into the Fourier domain with random-subset ordering and total-variation (TV) regularization. Additionally, we build a time-division-based multicolor light-field microscopy and conduct the three-dimensional (3D) imaging of the heart beating in zebrafish larva at over 95 Hz with a low light dose.
We demonstrate that this approach reduces computational resources, brings a tenfold speedup, and achieves a tenfold improvement for the noise robustness in terms of SSIM over the state-of-the-art approach.
We proposed a phase-space deconvolution algorithm for 3D reconstructions in fluorescence imaging. Compared with the state-of-the-art method, we show significant improvement in both computational effectiveness and noise robustness; we further demonstrated practical application on zebrafish larva with low exposure and low light dose.
光场显微镜在需要高速体积成像的生命科学的各种应用中取得了成功。然而,现有的光场重建算法在低光照条件下严重降级,并且去卷积过程耗时。
本研究旨在开发一种具有低计算成本的噪声鲁棒相位空间反卷积方法。
我们将光场相位空间反卷积模型重新表述为具有随机子集排序和全变差(TV)正则化的傅里叶域。此外,我们构建了基于时分复用的多色光场显微镜,并以低光剂量对斑马鱼幼虫的跳动进行了超过 95 Hz 的三维(3D)成像。
我们证明,与最先进的方法相比,该方法减少了计算资源,实现了十倍的加速,并且在 SSIM 方面,噪声鲁棒性提高了十倍。
我们提出了一种用于荧光成像的 3D 重建的相位空间反卷积算法。与最先进的方法相比,我们在计算效率和噪声鲁棒性方面都有显著提高;我们还进一步在低曝光和低光剂量的斑马鱼幼虫上进行了实际应用。