School of Electrical and Computer Engineering, College of Engineering, Tehran University, Tehran 14399-57131, Iran.
School of Mechanical Engineering, Shiraz University, Shiraz 71936-16548, Iran.
Biosensors (Basel). 2022 Jul 11;12(7):510. doi: 10.3390/bios12070510.
Separation and detection of cells and particles in a suspension are essential for various applications, including biomedical investigations and clinical diagnostics. Microfluidics realizes the miniaturization of analytical devices by controlling the motion of a small volume of fluids in microchannels and microchambers. Accordingly, microfluidic devices have been widely used in particle/cell manipulation processes. Different microfluidic methods for particle separation include dielectrophoretic, magnetic, optical, acoustic, hydrodynamic, and chemical techniques. Dielectrophoresis (DEP) is a method for manipulating polarizable particles' trajectories in non-uniform electric fields using unique dielectric characteristics. It provides several advantages for dealing with neutral bioparticles owing to its sensitivity, selectivity, and noninvasive nature. This review provides a detailed study on the signal-based DEP methods that use the applied signal parameters, including frequency, amplitude, phase, and shape for cell/particle separation and manipulation. Rather than employing complex channels or time-consuming fabrication procedures, these methods realize sorting and detecting the cells/particles by modifying the signal parameters while using a relatively simple device. In addition, these methods can significantly impact clinical diagnostics by making low-cost and rapid separation possible. We conclude the review by discussing the technical and biological challenges of DEP techniques and providing future perspectives in this field.
悬浮液中细胞和颗粒的分离和检测对于各种应用至关重要,包括生物医学研究和临床诊断。微流控技术通过控制微通道和微腔中少量流体的运动实现了分析设备的小型化。因此,微流控设备已广泛应用于颗粒/细胞操作过程中。用于颗粒分离的不同微流控方法包括介电泳、磁、光、声、流体动力学和化学技术。介电泳(DEP)是一种使用独特的介电特性在非均匀电场中操纵可极化颗粒轨迹的方法。由于其灵敏度、选择性和非侵入性,它为处理中性生物颗粒提供了多种优势。本综述详细研究了基于信号的 DEP 方法,这些方法使用应用信号参数(包括频率、幅度、相位和形状)进行细胞/颗粒分离和操作。这些方法通过修改信号参数而不是采用复杂的通道或耗时的制造程序,使用相对简单的设备来实现细胞/颗粒的分类和检测。此外,这些方法通过实现低成本和快速分离,对临床诊断产生重大影响。我们通过讨论 DEP 技术的技术和生物学挑战,并提供该领域的未来展望,结束了综述。