Hacking Sean M, Yakirevich Evgeny, Wang Yihong
Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Rhode Island Hospital and Lifespan Medical Center, 593 Eddy Street, Providence, RI 02903, USA.
Cancers (Basel). 2022 Jul 17;14(14):3469. doi: 10.3390/cancers14143469.
Breast cancers represent complex ecosystem-like networks of malignant cells and their associated microenvironment. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are biomarkers ubiquitous to clinical practice in evaluating prognosis and predicting response to therapy. Recent feats in breast cancer have led to a new digital era, and advanced clinical trials have resulted in a growing number of personalized therapies with corresponding biomarkers. In this state-of-the-art review, we included the latest 10-year updated recommendations for ER, PR, and HER2, along with the most salient information on tumor-infiltrating lymphocytes (TILs), Ki-67, PD-L1, and several prognostic/predictive biomarkers at genomic, transcriptomic, and proteomic levels recently developed for selection and optimization of breast cancer treatment. Looking forward, the multi-omic landscape of the tumor ecosystem could be integrated with computational findings from whole slide images and radiomics in predictive machine learning (ML) models. These are new digital ecosystems on the road to precision breast cancer medicine.
乳腺癌代表了恶性细胞及其相关微环境组成的类似复杂生态系统的网络。雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体2(HER2)是临床实践中评估预后和预测治疗反应时普遍使用的生物标志物。乳腺癌领域的最新进展引领了一个新的数字时代,先进的临床试验带来了越来越多与相应生物标志物相关的个性化疗法。在这篇前沿综述中,我们纳入了关于ER、PR和HER2的最新10年更新建议,以及关于肿瘤浸润淋巴细胞(TILs)、Ki-67、PD-L1的最显著信息,还有最近在基因组、转录组和蛋白质组水平上开发的用于乳腺癌治疗选择和优化的几种预后/预测生物标志物。展望未来,肿瘤生态系统的多组学格局可以与来自全切片图像的计算结果和放射组学整合到预测性机器学习(ML)模型中。这些是迈向精准乳腺癌医学道路上的新数字生态系统。