Suppr超能文献

颅内血肿的放射组学:所有小血肿都是良性的吗?

Radiomics for intracerebral hemorrhage: are all small hematomas benign?

机构信息

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

出版信息

Br J Radiol. 2021 Mar 1;94(1119):20201047. doi: 10.1259/bjr.20201047. Epub 2020 Dec 17.

Abstract

OBJECTIVES

We hypothesized that not all small hematomas are benign and that radiomics could predict hematoma expansion (HE) and short-term outcomes in small hematomas.

METHODS

We analyzed 313 patients with small (<10 ml) intracerebral hemorrhage (ICH) who underwent baseline non-contrast CT within 6 h of symptom onset between September 2013 and February 2019. Poor outcome was defined as a Glasgow Outcome Scale score ≤3. A radiomic model and a clinical model were built using least absolute shrinkageand selection operator algorithm or multivariate analysis. A combined model that incorporated the developed radiomic score and clinical factors was then constructed. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of these models.

RESULTS

The addition of radiomics to clinical factors significantly improved the prediction performance of HE compared with the clinical model alone in both the training {AUC, 0.762 [95% CI (0.665-0.859)] versus AUC, 0.651 [95% CI (0.556-0.745)], = 0.007} and test {AUC, 0.776 [95% CI (0.655-0.897) versus AUC, 0.631 [95% CI (0.451-0.810)], = 0.001} cohorts. Moreover, the radiomic-based model achieved good discrimination ability of poor outcomes in the 3-10 ml group (AUCs 0.720 and 0.701).

CONCLUSION

Compared with clinical information alone, combined model had greater potential for discriminating between benign and malignant course in patients with small ICH, particularly 3-10 ml hematomas.

ADVANCES IN KNOWLEDGE

Radiomics can be used as a supplement to conventional medical imaging, improving clinical decision-making and facilitating personalized treatment in small ICH.

摘要

目的

我们假设并非所有小血肿都是良性的,并且放射组学可以预测小血肿的血肿扩大(HE)和短期结果。

方法

我们分析了 2013 年 9 月至 2019 年 2 月期间发病后 6 小时内接受基线非对比 CT 的 313 名小(<10 ml)脑出血(ICH)患者。预后不良定义为格拉斯哥结局量表评分≤3 分。使用最小绝对值收缩和选择算子算法或多变量分析构建放射组学模型和临床模型。然后构建了一个结合开发的放射组学评分和临床因素的联合模型。使用受试者工作特征曲线下的面积(AUC)来评估这些模型的性能。

结果

与单独的临床模型相比,放射组学与临床因素相结合,在训练(AUC,0.762 [95%CI(0.665-0.859)]与 AUC,0.651 [95%CI(0.556-0.745)],= 0.007)和测试(AUC,0.776 [95%CI(0.655-0.897)]与 AUC,0.631 [95%CI(0.451-0.810)],= 0.001)队列中,HE 的预测性能均显著提高。此外,基于放射组学的模型在 3-10 ml 组中具有良好的不良结局区分能力(AUCs 0.720 和 0.701)。

结论

与单独的临床信息相比,联合模型在小 ICH 患者中区分良性和恶性病程具有更大的潜力,特别是在 3-10 ml 血肿中。

知识进展

放射组学可以作为常规医学成像的补充,提高临床决策水平,并促进小 ICH 的个体化治疗。

相似文献

5
Can perihaematomal radiomics features predict haematoma expansion?血肿周围放射组学特征能否预测血肿扩大?
Clin Radiol. 2021 Aug;76(8):629.e1-629.e9. doi: 10.1016/j.crad.2021.03.003. Epub 2021 Apr 13.
7
Quantitative imaging for predicting hematoma expansion in intracerebral hemorrhage: A multimodel comparison.脑出血血肿扩大的定量成像预测:多模型比较。
J Stroke Cerebrovasc Dis. 2024 Jul;33(7):107731. doi: 10.1016/j.jstrokecerebrovasdis.2024.107731. Epub 2024 Apr 23.

引用本文的文献

本文引用的文献

3
Introduction to Radiomics.放射组学简介。
J Nucl Med. 2020 Apr;61(4):488-495. doi: 10.2967/jnumed.118.222893. Epub 2020 Feb 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验