Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Br J Radiol. 2021 Mar 1;94(1119):20201047. doi: 10.1259/bjr.20201047. Epub 2020 Dec 17.
We hypothesized that not all small hematomas are benign and that radiomics could predict hematoma expansion (HE) and short-term outcomes in small hematomas.
We analyzed 313 patients with small (<10 ml) intracerebral hemorrhage (ICH) who underwent baseline non-contrast CT within 6 h of symptom onset between September 2013 and February 2019. Poor outcome was defined as a Glasgow Outcome Scale score ≤3. A radiomic model and a clinical model were built using least absolute shrinkageand selection operator algorithm or multivariate analysis. A combined model that incorporated the developed radiomic score and clinical factors was then constructed. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of these models.
The addition of radiomics to clinical factors significantly improved the prediction performance of HE compared with the clinical model alone in both the training {AUC, 0.762 [95% CI (0.665-0.859)] versus AUC, 0.651 [95% CI (0.556-0.745)], = 0.007} and test {AUC, 0.776 [95% CI (0.655-0.897) versus AUC, 0.631 [95% CI (0.451-0.810)], = 0.001} cohorts. Moreover, the radiomic-based model achieved good discrimination ability of poor outcomes in the 3-10 ml group (AUCs 0.720 and 0.701).
Compared with clinical information alone, combined model had greater potential for discriminating between benign and malignant course in patients with small ICH, particularly 3-10 ml hematomas.
Radiomics can be used as a supplement to conventional medical imaging, improving clinical decision-making and facilitating personalized treatment in small ICH.
我们假设并非所有小血肿都是良性的,并且放射组学可以预测小血肿的血肿扩大(HE)和短期结果。
我们分析了 2013 年 9 月至 2019 年 2 月期间发病后 6 小时内接受基线非对比 CT 的 313 名小(<10 ml)脑出血(ICH)患者。预后不良定义为格拉斯哥结局量表评分≤3 分。使用最小绝对值收缩和选择算子算法或多变量分析构建放射组学模型和临床模型。然后构建了一个结合开发的放射组学评分和临床因素的联合模型。使用受试者工作特征曲线下的面积(AUC)来评估这些模型的性能。
与单独的临床模型相比,放射组学与临床因素相结合,在训练(AUC,0.762 [95%CI(0.665-0.859)]与 AUC,0.651 [95%CI(0.556-0.745)],= 0.007)和测试(AUC,0.776 [95%CI(0.655-0.897)]与 AUC,0.631 [95%CI(0.451-0.810)],= 0.001)队列中,HE 的预测性能均显著提高。此外,基于放射组学的模型在 3-10 ml 组中具有良好的不良结局区分能力(AUCs 0.720 和 0.701)。
与单独的临床信息相比,联合模型在小 ICH 患者中区分良性和恶性病程具有更大的潜力,特别是在 3-10 ml 血肿中。
放射组学可以作为常规医学成像的补充,提高临床决策水平,并促进小 ICH 的个体化治疗。