Suppr超能文献

利用脑实质内和脑室内出血的影像组学分析及临床因素预测脑卒中患者的不良预后。

Prediction of poor outcome in stroke patients using radiomics analysis of intraparenchymal and intraventricular hemorrhage and clinical factors.

机构信息

Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan.

Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, Taiwan.

出版信息

Neurol Sci. 2023 Apr;44(4):1289-1300. doi: 10.1007/s10072-022-06528-4. Epub 2022 Nov 29.

Abstract

PURPOSE

To build three prognostic models using radiomics analysis of the hemorrhagic lesions, clinical variables, and their combination, to predict the outcome of stroke patients with spontaneous intracerebral hemorrhage (sICH).

MATERIALS AND METHODS

Eighty-three sICH patients were included. Among them, 40 patients (48.2%) had poor prognosis with modified Rankin scale (mRS) of 5 and 6 at discharge, and the prognostic model was built to differentiate mRS ≤ 4 vs. 5 + 6. The region of interest (ROI) of intraparenchymal hemorrhage (IPH) and intraventricular hemorrhage (IVH) were separately segmented. Features were extracted using PyRadiomics, and the support vector machine was applied to select features and build radiomics models based on IPH and IPH + IVH. The clinical models were built using multivariate logistic regression, and then the radiomics scores were combined with clinical variables to build the combined model.

RESULTS

When using IPH, the AUC for radiomics, clinical, and combined model was 0.78, 0.82, and 0.87, respectively. When using IPH + IVH, the AUC was increased to 0.80, 0.84, and 0.90, respectively. The combined model had a significantly improved AUC compared to the radiomics by DeLong test. A clinical prognostic model based on the ICH score of 0-1 only achieved AUC of 0.71.

CONCLUSIONS

The combined model using the radiomics score derived from IPH + IVH and the clinical factors could achieve a high accuracy in prediction of sICH patients with poor outcome, which may be used to assist in making the decision about the optimal care.

摘要

目的

利用出血病变的放射组学分析、临床变量及其组合构建三个预后模型,以预测自发性脑出血(sICH)患者的预后。

材料与方法

纳入 83 例 sICH 患者。其中,40 例(48.2%)患者出院时改良 Rankin 量表(mRS)评分为 5 分和 6 分,预后较差,建立预后模型以区分 mRS≤4 与 5+6。分别对脑实质血肿(IPH)和脑室内出血(IVH)的感兴趣区(ROI)进行分割。使用 PyRadiomics 提取特征,应用支持向量机基于 IPH 和 IPH+IVH 选择特征并构建放射组学模型。使用多变量逻辑回归构建临床模型,然后将放射组学评分与临床变量相结合构建联合模型。

结果

使用 IPH 时,放射组学、临床和联合模型的 AUC 分别为 0.78、0.82 和 0.87。使用 IPH+IVH 时,AUC 分别增加至 0.80、0.84 和 0.90。与放射组学相比,DeLong 检验显示联合模型的 AUC 显著提高。仅基于 ICH 评分 0-1 的临床预后模型的 AUC 为 0.71。

结论

使用源自 IPH+IVH 的放射组学评分和临床因素的联合模型可实现对 sICH 预后不良患者的高精度预测,可能有助于做出最佳治疗决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验