Suppr超能文献

()异化途径的作用:甲醛毒性与能量代谢

Role of Dissimilative Pathway of (): Formaldehyde Toxicity and Energy Metabolism.

作者信息

Berrios Julio, Theron Chrispian W, Steels Sébastien, Ponce Belén, Velastegui Edgar, Bustos Cristina, Altamirano Claudia, Fickers Patrick

机构信息

School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2340000, Chile.

GeneMill, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7BE, UK.

出版信息

Microorganisms. 2022 Jul 20;10(7):1466. doi: 10.3390/microorganisms10071466.

Abstract

(aka ) is a yeast able to grow in methanol as the sole carbon and energy source. This substrate is converted into formaldehyde, a toxic intermediary that can either be assimilated to biomass or dissimilated to CO through the enzymes formaldehyde dehydrogenase (FLD) and formate dehydrogenase, also producing energy in the form of NADH. The dissimilative pathway has been described as an energy producing and a detoxifying route, but conclusive evidence has not been provided for this. In order to elucidate this theory, we generated mutants lacking the FLD activity (Δ) and used flux analysis to evaluate the metabolic impact of this disrupted pathway. Unexpectedly, we found that the specific growth rate of the Δ strain was only slightly lower (92%) than the control. In contrast, the sensitivity to formaldehyde pulses (up to 8mM) was significantly higher in the Δ mutant strain and was associated with a higher maintenance energy. In addition, the intracellular flux estimation revealed a high metabolic flexibility of in response to the disrupted pathway. Our results suggest that the role of the dissimilative pathway is mainly to protect the cells from the harmful effect of formaldehyde, as they were able to compensate for the energy provided from this pathway when disrupted.

摘要

(又名 )是一种能够在甲醇作为唯一碳源和能源的条件下生长的酵母。这种底物被转化为甲醛,甲醛是一种有毒的中间产物,它既可以被同化为生物质,也可以通过甲醛脱氢酶(FLD)和甲酸脱氢酶被异化分解为二氧化碳,同时还以NADH的形式产生能量。异化途径被描述为一种能量产生和解毒途径,但尚未为此提供确凿证据。为了阐明这一理论,我们构建了缺乏FLD活性的突变体(Δ),并使用通量分析来评估这一被破坏途径的代谢影响。出乎意料的是,我们发现Δ菌株的比生长速率仅比对照略低(92%)。相比之下,Δ突变菌株对甲醛脉冲(高达8mM)的敏感性显著更高,并且与更高的维持能量相关。此外,细胞内通量估计显示 对被破坏途径具有高度的代谢灵活性。我们的结果表明,异化途径的作用主要是保护细胞免受甲醛的有害影响,因为当该途径被破坏时,它们能够补偿由此途径提供的能量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05c9/9321669/6e82435c2f8b/microorganisms-10-01466-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验