Pfenning Andreas, Krüger Sebastian, Jabeen Fauzia, Worschech Lukas, Hartmann Fabian, Höfling Sven
Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Technische Physik, Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Würzburg-Dresden Cluster of Excellence ct.qmat, University of Würzburg, 97074 Würzburg, Germany.
Nanomaterials (Basel). 2022 Jul 9;12(14):2358. doi: 10.3390/nano12142358.
Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown.
光学量子信息科学与技术需要具备产生、控制和检测单个或多个光量子的能力。检测单个光子的需求推动了各种新型且经过改进的单光子探测器(SPD)的发展,这些探测器的性能得到了提升。超导纳米线单光子探测器(SNSPD)和单光子雪崩二极管(SPAD)是该领域的佼佼者,但也有其他有前景的创新型器件不断涌现。在这篇综述文章中,我们讨论了一种能够进行单光子计数的替代器件的当前技术水平:共振隧穿二极管(RTD)单光子探测器。由于其独特的光电探测机制和具有负微分电导区域的电流 - 电压特性,RTD单光子探测器理论上比传统的SPD具有多个优势,例如在高温下具有固有的无死时间光子数分辨率,同时具有低暗计数、低定时抖动和多种光子检测模式。这篇综述文章汇集了我们之前的研究和当前的实验结果。我们关注RTD - SPD的当前局限性,并提供详细的设计和参数变化,以便潜在地应用于下一代RTD - SPD,以提高这些替代单光子计数器件的品质因数。展示了无量子点的RTD的单光子检测能力。