Suppr超能文献

基于应用程序的正念训练通过参与强化学习机制预测吸烟行为的减少:一项初步的自然主义单臂研究。

App-Based Mindfulness Training Predicts Reductions in Smoking Behavior by Engaging Reinforcement Learning Mechanisms: A Preliminary Naturalistic Single-Arm Study.

机构信息

Mindfulness Center, School of Public Health, Brown University, 121 South Main Street, Providence, RI 02903, USA.

Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK 74136, USA.

出版信息

Sensors (Basel). 2022 Jul 8;22(14):5131. doi: 10.3390/s22145131.

Abstract

Mindfulness training (MT) has been shown to influence smoking behavior, yet the involvement of reinforcement learning processes as underlying mechanisms remains unclear. This naturalistic, single-arm study aimed to examine slope trajectories of smoking behavior across uses of our app-based MT craving tool for smoking cessation, and whether this relationship would be mediated by the attenuating impact of MT on expected reward values of smoking. Our craving tool embedded in our MT app-based smoking cessation program was used by 108 participants upon the experience of cigarette cravings in real-world contexts. Each use of the tool involved mindful awareness to the experience of cigarette craving, a decision as to whether the participant wanted to smoke or ride out their craving with a mindfulness exercise, and paying mindful attention to the choice behavior and its outcome (contentment levels felt from engaging in the behavior). Expected reward values were computed using contentment levels experienced from the choice behavior as the reward signal in a Rescorla−Wagner reinforcement learning model. Multi-level mediation analysis revealed a significant decreasing trajectory of smoking frequency across MT craving tool uses and that this relationship was mediated by the negative relationship between MT and expected reward values (all ps < 0.001). After controlling for the mediator, the predictive relationship between MT and smoking was no longer significant (p < 0.001 before and p = 0.357 after controlling for the mediator). Results indicate that the use of our app-based MT craving tool is associated with negative slope trajectories of smoking behavior across uses, mediated by reward learning mechanisms. This single-arm naturalistic study provides preliminary support for further RCT studies examining the involvement of reward learning mechanisms underlying app-based mindfulness training for smoking cessation.

摘要

正念训练(MT)已被证明会影响吸烟行为,但作为潜在机制的强化学习过程的参与仍不清楚。本自然主义、单臂研究旨在考察在我们基于应用程序的戒烟 MT 渴望工具的使用过程中,吸烟行为的斜率轨迹,以及这种关系是否会受到 MT 对吸烟预期奖励值的减弱影响。我们基于应用程序的 MT 戒烟计划中的渴望工具被 108 名参与者在现实环境中经历吸烟渴望时使用。每次使用该工具都涉及到对吸烟渴望的体验进行正念意识,参与者决定是否想吸烟或用正念练习来抑制他们的渴望,以及关注选择行为及其结果(从参与行为中获得的满足感水平)。预期奖励值是使用从选择行为中获得的满足感作为奖励信号,在 Rescorla−Wagner 强化学习模型中计算出来的。多层次中介分析显示,在 MT 渴望工具的使用过程中,吸烟频率呈现显著下降的轨迹,而这种关系受到 MT 和预期奖励值之间的负相关关系的中介作用(所有 p 值均<0.001)。在控制中介因素后,MT 与吸烟之间的预测关系不再显著(在控制中介因素之前为 p<0.001,在控制中介因素之后为 p=0.357)。结果表明,我们基于应用程序的 MT 渴望工具的使用与使用过程中吸烟行为的负斜率轨迹有关,这是由奖励学习机制介导的。这项单臂自然主义研究为进一步 RCT 研究提供了初步支持,以检验基于应用程序的正念训练对戒烟的奖励学习机制的参与。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0bf/9317542/55e8f1d30757/sensors-22-05131-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验