Suppr超能文献

基于 LUCAS、CORINE 和 GLAD Landsat 数据,为欧洲(2000-2019 年)生成土地利用/土地覆盖时间序列地图的时空集成机器学习框架

A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000-2019) based on LUCAS, CORINE and GLAD Landsat.

机构信息

OpenGeoHub, Wageningen, The Netherlands.

Envirometrix, Wageningen, The Netherlands.

出版信息

PeerJ. 2022 Jul 21;10:e13573. doi: 10.7717/peerj.13573. eCollection 2022.

Abstract

A spatiotemporal machine learning framework for automated prediction and analysis of long-term Land Use/Land Cover dynamics is presented. The framework includes: (1) harmonization and preprocessing of spatial and spatiotemporal input datasets (GLAD Landsat, NPP/VIIRS) including five million harmonized LUCAS and CORINE Land Cover-derived training samples, (2) model building based on spatial k-fold cross-validation and hyper-parameter optimization, (3) prediction of the most probable class, class probabilities and model variance of predicted probabilities per pixel, (4) LULC change analysis on time-series of produced maps. The spatiotemporal ensemble model consists of a random forest, gradient boosted tree classifier, and an artificial neural network, with a logistic regressor as meta-learner. The results show that the most important variables for mapping LULC in Europe are: seasonal aggregates of Landsat green and near-infrared bands, multiple Landsat-derived spectral indices, long-term surface water probability, and elevation. Spatial cross-validation of the model indicates consistent performance across multiple years with overall accuracy (a weighted F1-score) of 0.49, 0.63, and 0.83 when predicting 43 (level-3), 14 (level-2), and five classes (level-1). Additional experiments show that spatiotemporal models generalize better to unknown years, outperforming single-year models on known-year classification by 2.7% and unknown-year classification by 3.5%. Results of the accuracy assessment using 48,365 independent test samples shows 87% match with the validation points. Results of time-series analysis (time-series of LULC probabilities and NDVI images) suggest forest loss in large parts of Sweden, the Alps, and Scotland. Positive and negative trends in NDVI in general match the land degradation and land restoration classes, with "urbanization" showing the most negative NDVI trend. An advantage of using spatiotemporal ML is that the fitted model can be used to predict LULC in years that were not included in its training dataset, allowing generalization to past and future periods, to predict LULC for years prior to 2000 and beyond 2020. The generated LULC time-series data stack (ODSE-LULC), including the training points, is publicly available via the ODSE Viewer. Functions used to prepare data and run modeling are available via the eumap library for Python.

摘要

提出了一种时空机器学习框架,用于自动预测和分析长期土地利用/土地覆盖动态。该框架包括:(1)对空间和时空输入数据集(GLAD Landsat、NPP/VIIRS)进行协调和预处理,包括五百万个协调后的 LUCA 和 CORINE 土地覆盖训练样本;(2)基于空间 k 折交叉验证和超参数优化的模型构建;(3)对每个像素的最可能类别、类别概率和预测概率模型方差进行预测;(4)对生成地图的时间序列进行土地利用/土地覆盖变化分析。时空集成模型由随机森林、梯度提升树分类器和人工神经网络组成,逻辑回归器作为元学习器。结果表明,用于绘制欧洲土地利用/土地覆盖图的最重要变量是:Landsat 绿光和近红外波段的季节性总和、多个 Landsat 衍生光谱指数、长期地表水概率和海拔。模型的空间交叉验证表明,在多个年份的表现一致,当预测 43 个(3 级)、14 个(2 级)和 5 个类别(1 级)时,整体准确性(加权 F1 得分)为 0.49、0.63 和 0.83。额外的实验表明,时空模型可以更好地推广到未知年份,在已知年份的分类中比单一年份模型高出 2.7%,在未知年份的分类中高出 3.5%。使用 48365 个独立测试样本进行准确性评估的结果显示,与验证点的匹配度为 87%。时间序列分析(土地利用/土地覆盖概率和 NDVI 图像的时间序列)的结果表明,瑞典、阿尔卑斯山和苏格兰的大部分地区森林都在减少。一般来说,NDVI 的正趋势和负趋势与土地退化和土地恢复类相匹配,而“城市化”则显示出最负的 NDVI 趋势。使用时空机器学习的一个优势是,拟合的模型可以用于预测不在其训练数据集中的年份的土地利用/土地覆盖,从而推广到过去和未来的时期,预测 2000 年前和 2020 年后的土地利用/土地覆盖。生成的土地利用/土地覆盖时间序列数据堆栈(ODSE-LULC),包括训练点,通过 ODSE 查看器公开提供。用于准备数据和运行建模的函数可通过 Python 的 eumap 库获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fd2/9308969/0cbdc39e1830/peerj-10-13573-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验