Suppr超能文献

通过计算机视觉培养临床清晰度:关于全切片成像和人工智能的当前视角

Cultivating Clinical Clarity through Computer Vision: A Current Perspective on Whole Slide Imaging and Artificial Intelligence.

作者信息

Patel Ankush U, Shaker Nada, Mohanty Sambit, Sharma Shivani, Gangal Shivam, Eloy Catarina, Parwani Anil V

机构信息

Mayo Clinic Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA.

Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Diagnostics (Basel). 2022 Jul 22;12(8):1778. doi: 10.3390/diagnostics12081778.

Abstract

Diagnostic devices, methodological approaches, and traditional constructs of clinical pathology practice, cultivated throughout centuries, have transformed radically in the wake of explosive technological growth and other, e.g., environmental, catalysts of change. Ushered into the fray of modern laboratory medicine are digital imaging devices and machine-learning (ML) software fashioned to mitigate challenges, e.g., practitioner shortage while preparing clinicians for emerging interconnectivity of environments and diagnostic information in the era of big data. As computer vision shapes new constructs for the modern world and intertwines with clinical medicine, cultivating clarity of our new terrain through examining the trajectory and current scope of computational pathology and its pertinence to clinical practice is vital. Through review of numerous studies, we find developmental efforts for ML migrating from research to standardized clinical frameworks while overcoming obstacles that have formerly curtailed adoption of these tools, e.g., generalizability, data availability, and user-friendly accessibility. Groundbreaking validatory efforts have facilitated the clinical deployment of ML tools demonstrating the capacity to effectively aid in distinguishing tumor subtype and grade, classify early vs. advanced cancer stages, and assist in quality control and primary diagnosis applications. Case studies have demonstrated the benefits of streamlined, digitized workflows for practitioners alleviated by decreased burdens.

摘要

在经历了几个世纪发展的临床病理学实践中,诊断设备、方法学途径和传统架构,在技术爆炸式增长以及其他(如环境等)变革催化剂的推动下,已发生了根本性的转变。数字成像设备和机器学习(ML)软件被引入现代检验医学领域,旨在应对诸如从业者短缺等挑战,同时让临床医生为大数据时代环境与诊断信息的新互联性做好准备。随着计算机视觉为现代世界塑造新架构并与临床医学相互交织,通过审视计算病理学的发展轨迹和当前范围及其与临床实践的相关性,来明晰我们的新领域至关重要。通过对众多研究的回顾,我们发现机器学习的发展努力正从研究转向标准化临床框架,同时克服了以前阻碍这些工具应用的障碍,如通用性、数据可用性和用户友好性。开创性的验证工作推动了机器学习工具的临床应用,这些工具能够有效帮助区分肿瘤亚型和分级、对癌症早期与晚期阶段进行分类,并协助质量控制和初步诊断应用。案例研究表明,简化的数字化工作流程减轻了从业者的负担,带来了诸多益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237c/9332710/92ee03bd61dc/diagnostics-12-01778-g001a.jpg

相似文献

2
Artificial intelligence in diagnostic pathology.
Diagn Pathol. 2023 Oct 3;18(1):109. doi: 10.1186/s13000-023-01375-z.
4
Application of digital pathology and machine learning in the liver, kidney and lung diseases.
J Pathol Inform. 2023 Jan 3;14:100184. doi: 10.1016/j.jpi.2022.100184. eCollection 2023.
5
Artificial intelligence and digital pathology: clinical promise and deployment considerations.
J Med Imaging (Bellingham). 2023 Sep;10(5):051802. doi: 10.1117/1.JMI.10.5.051802. Epub 2023 Jul 31.
6
Biobanking in the digital pathology era.
Oncol Res. 2022 Aug 31;29(4):229-233. doi: 10.32604/or.2022.024892. eCollection 2021.
7
Applied machine learning in hematopathology.
Int J Lab Hematol. 2023 Jun;45 Suppl 2:87-94. doi: 10.1111/ijlh.14110. Epub 2023 May 31.
8
Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association.
J Pathol Inform. 2019 Mar 8;10:9. doi: 10.4103/jpi.jpi_82_18. eCollection 2019.
9
The digital revolution in veterinary pathology.
J Comp Pathol. 2024 Oct;214:19-31. doi: 10.1016/j.jcpa.2024.08.001. Epub 2024 Sep 5.
10
Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples.
Histopathology. 2021 May;78(6):791-804. doi: 10.1111/his.14304. Epub 2021 Mar 8.

引用本文的文献

1
Informatics strategies for early detection and risk mitigation in pancreatic cancer patients.
Neoplasia. 2025 Feb;60:101129. doi: 10.1016/j.neo.2025.101129. Epub 2025 Jan 21.
2
Biobanking in the digital pathology era.
Oncol Res. 2022 Aug 31;29(4):229-233. doi: 10.32604/or.2022.024892. eCollection 2021.
3
Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies.
Virchows Arch. 2023 Mar;482(3):595-604. doi: 10.1007/s00428-023-03518-5. Epub 2023 Feb 21.
4
Digital pathology implementation in a private laboratory: The CEDAP experience.
J Pathol Inform. 2023 Jan 3;14:100180. doi: 10.1016/j.jpi.2022.100180. eCollection 2023.

本文引用的文献

1
DPA-ESDIP-JSDP Task Force for Worldwide Adoption of Digital Pathology.
J Pathol Inform. 2021 Dec 16;12:51. doi: 10.4103/jpi.jpi_65_21. eCollection 2021.
3
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge.
Nat Med. 2022 Jan;28(1):154-163. doi: 10.1038/s41591-021-01620-2. Epub 2022 Jan 13.
4
A Survival Guide for the Rapid Transition to a Fully Digital Workflow: The "Caltagirone Example".
Diagnostics (Basel). 2021 Oct 16;11(10):1916. doi: 10.3390/diagnostics11101916.
6
Tissue Multiplex Analyte Detection in Anatomic Pathology - Pathways to Clinical Implementation.
Front Mol Biosci. 2021 Jul 27;8:672531. doi: 10.3389/fmolb.2021.672531. eCollection 2021.
7
Deep-Learning-Driven Quantification of Interstitial Fibrosis in Digitized Kidney Biopsies.
Am J Pathol. 2021 Aug;191(8):1442-1453. doi: 10.1016/j.ajpath.2021.05.005. Epub 2021 May 23.
8
ISUP Consensus Definition of Cribriform Pattern Prostate Cancer.
Am J Surg Pathol. 2021 Aug 1;45(8):1118-1126. doi: 10.1097/PAS.0000000000001728.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验