Suppr超能文献

人工智能与数字病理学:临床前景与应用考量

Artificial intelligence and digital pathology: clinical promise and deployment considerations.

作者信息

Zarella Mark D, McClintock David S, Batra Harsh, Gullapalli Rama R, Valante Michael, Tan Vivian O, Dayal Shubham, Oh Kei Shing, Lara Haydee, Garcia Chris A, Abels Esther

机构信息

Mayo Clinic, Division of Computational Pathology and AI, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, United States.

University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology, Houston, Texas, United States.

出版信息

J Med Imaging (Bellingham). 2023 Sep;10(5):051802. doi: 10.1117/1.JMI.10.5.051802. Epub 2023 Jul 31.

Abstract

Artificial intelligence (AI) presents an opportunity in anatomic pathology to provide quantitative objective support to a traditionally subjective discipline, thereby enhancing clinical workflows and enriching diagnostic capabilities. AI requires access to digitized pathology materials, which, at present, are most commonly generated from the glass slide using whole-slide imaging. Models are developed collaboratively or sourced externally, and best practices suggest validation with internal datasets most closely resembling the data expected in practice. Although an array of AI models that provide operational support for pathology practices or improve diagnostic quality and capabilities has been described, most of them can be categorized into one or more discrete types. However, their function in the pathology workflow can vary, as a single algorithm may be appropriate for screening and triage, diagnostic assistance, virtual second opinion, or other uses depending on how it is implemented and validated. Despite the clinical promise of AI, the barriers to adoption have been numerous, to which inclusion of new stakeholders and expansion of reimbursement opportunities may be among the most impactful solutions.

摘要

人工智能(AI)为解剖病理学带来了机遇,可为这一传统上主观的学科提供定量客观支持,从而优化临床工作流程并丰富诊断能力。人工智能需要获取数字化病理材料,目前这些材料最常见的是通过全切片成像从玻璃切片生成的。模型通过合作开发或从外部获取,最佳实践建议使用与实际预期数据最相似的内部数据集进行验证。尽管已经描述了一系列为病理实践提供操作支持或提高诊断质量和能力的人工智能模型,但其中大多数可以归类为一种或多种离散类型。然而,它们在病理工作流程中的功能可能会有所不同,因为根据其实现和验证方式,单个算法可能适用于筛查和分诊、诊断辅助、虚拟第二意见或其他用途。尽管人工智能具有临床前景,但采用过程中存在诸多障碍,纳入新的利益相关者和扩大报销机会可能是最具影响力的解决方案之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab34/10389766/f5c52b988aab/JMI-010-051802-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验