Suppr超能文献

基于MRI对脑膜瘤中Ki-67增殖指数的高效预测:从传统放射学发现到机器学习方法

Efficient Prediction of Ki-67 Proliferation Index in Meningiomas on MRI: From Traditional Radiological Findings to a Machine Learning Approach.

作者信息

Zhao Yanjie, Xu Jianfeng, Chen Boran, Cao Le, Chen Chaoyue

机构信息

Department of Neurosurgery, West China Hospital, No.37, Guoxue Alley, Sichuan University, Chengdu 610041, China.

Department of Radiology, West China Hospital, No.37, Guoxue Alley, Sichuan University, Chengdu 610041, China.

出版信息

Cancers (Basel). 2022 Jul 26;14(15):3637. doi: 10.3390/cancers14153637.

Abstract

Background/aim This study aimed to explore the value of radiological and radiomic features retrieved from magnetic resonance imaging in the prediction of a Ki-67 proliferative index in meningioma patients using a machine learning model. Methods This multicenter, retrospective study included 371 patients collected from two centers. The Ki-67 expression was classified into low-expressed and high-expressed groups with a threshold of 5%. Clinical features and radiological features were collected and analyzed by using univariate and multivariate statistical analyses. Radiomic features were extracted from contrast-enhanced images, followed by three independent feature selections. Six predictive models were constructed with different combinations of features by using linear discriminant analysis (LDA) classifier. Results The multivariate analysis suggested that the presence of intratumoral necrosis (p = 0.032) and maximum diameter (p < 0.001) were independently correlated with a high Ki-67 status. The predictive models showed good performance with AUC of 0.837, accuracy of 0.810, sensitivity of 0.857, and specificity of 0.771 in the internal test and with AUC of 0.700, accuracy of 0.557, sensitivity of 0.314, and specificity of 0.885 in the external test. Conclusion The results of this study suggest that the predictive model can efficiently predict the Ki-67 index of meningioma patients to facilitate the therapeutic management.

摘要

背景/目的 本研究旨在利用机器学习模型,探讨从磁共振成像中提取的放射学和放射组学特征在预测脑膜瘤患者Ki-67增殖指数方面的价值。方法 这项多中心回顾性研究纳入了从两个中心收集的371例患者。Ki-67表达以5%为阈值分为低表达组和高表达组。采用单因素和多因素统计分析收集并分析临床特征和放射学特征。从增强图像中提取放射组学特征,随后进行三次独立的特征选择。使用线性判别分析(LDA)分类器,用不同的特征组合构建六个预测模型。结果 多因素分析表明,瘤内坏死的存在(p = 0.032)和最大直径(p < 0.001)与高Ki-67状态独立相关。预测模型在内测试中表现良好,AUC为0.837,准确率为0.810,灵敏度为0.857,特异性为0.771;在外测试中,AUC为0.700,准确率为0.557,灵敏度为0.314,特异性为0.885。结论 本研究结果表明,该预测模型能够有效预测脑膜瘤患者的Ki-67指数,以促进治疗管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668c/9330288/33362b94d409/cancers-14-03637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验