Suppr超能文献

使用机器学习技术进行身体活动监测与分类

Physical Activity Monitoring and Classification Using Machine Learning Techniques.

作者信息

Alsareii Saeed Ali, Awais Muhammad, Alamri Abdulrahman Manaa, AlAsmari Mansour Yousef, Irfan Muhammad, Aslam Nauman, Raza Mohsin

机构信息

Department of Surgery, College of Medicine, Najran University Saudi Arabia, Najran 61441, Saudi Arabia.

Department of Computer Science, Edge Hill University, St Helens Rd, Ormskirk L39 4QP, UK.

出版信息

Life (Basel). 2022 Jul 22;12(8):1103. doi: 10.3390/life12081103.

Abstract

Physical activity plays an important role in controlling obesity and maintaining healthy living. It becomes increasingly important during a pandemic due to restrictions on outdoor activities. Tracking physical activities using miniature wearable sensors and state-of-the-art machine learning techniques can encourage healthy living and control obesity. This work focuses on introducing novel techniques to identify and log physical activities using machine learning techniques and wearable sensors. Physical activities performed in daily life are often unstructured and unplanned, and one activity or set of activities (sitting, standing) might be more frequent than others (walking, stairs up, stairs down). None of the existing activities classification systems have explored the impact of such class imbalance on the performance of machine learning classifiers. Therefore, the main aim of the study is to investigate the impact of class imbalance on the performance of machine learning classifiers and also to observe which classifier or set of classifiers is more sensitive to class imbalance than others. The study utilizes motion sensors' data of 30 participants, recorded while performing a variety of daily life activities. Different training splits are used to introduce class imbalance which reveals the performance of the selected state-of-the-art algorithms with various degrees of imbalance. The findings suggest that the class imbalance plays a significant role in the performance of the system, and the underrepresentation of physical activity during the training stage significantly impacts the performance of machine learning classifiers.

摘要

体育活动在控制肥胖和维持健康生活方面发挥着重要作用。在大流行期间,由于户外活动受到限制,其变得愈发重要。使用微型可穿戴传感器和最先进的机器学习技术来追踪体育活动,可以鼓励健康生活并控制肥胖。这项工作专注于引入新技术,利用机器学习技术和可穿戴传感器来识别和记录体育活动。日常生活中进行的体育活动往往是无组织、无计划的,一种活动或一组活动(坐着、站着)可能比其他活动(行走、上楼、下楼)更频繁。现有的活动分类系统均未探讨这种类别不平衡对机器学习分类器性能的影响。因此,该研究的主要目的是调查类别不平衡对机器学习分类器性能的影响,并观察哪种分类器或一组分类器比其他分类器对类别不平衡更敏感。该研究利用了30名参与者在进行各种日常生活活动时记录的运动传感器数据。使用不同的训练划分来引入类别不平衡,这揭示了所选最先进算法在不同程度不平衡情况下的性能。研究结果表明,类别不平衡在系统性能中起着重要作用,训练阶段体育活动的代表性不足会显著影响机器学习分类器的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0126/9332439/8df3b0c8e81e/life-12-01103-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验