Marković Darka, Zille Andrea, Ribeiro Ana Isabel, Mikučioniene Daiva, Simončič Barbara, Tomšič Brigita, Radetić Maja
Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, 4800-058 Guimarães, Portugal.
Nanomaterials (Basel). 2022 Jul 24;12(15):2539. doi: 10.3390/nano12152539.
Growing demand for sustainable and green technologies has turned industries and research toward the more efficient utilization of natural and renewable resources. In an effort to tackle this issue, we developed an antibacterial textile nanocomposite material based on cotton and peat fibers with immobilized Cu-based nanostructures. In order to overcome poor wettability and affinity for Cu-ions, the substrate was activated by corona discharge and coated with the biopolymer chitosan before the in situ synthesis of nanostructures. Field emission scanning electron microscopy (FESEM) images show that the application of gallic or ascorbic acid as green reducing agents resulted in the formation of Cu-based nanosheets and mostly spherical nanoparticles, respectively. X-ray photoelectron spectroscopy (XPS) analysis revealed that the formed nanostructures consisted of CuO and CuO. A higher-concentration precursor solution led to higher copper content in the nanocomposites, independent of the reducing agent and chitosan deacetylation degree. Most of the synthesized nanocomposites provided maximum reduction of the bacteria and . A combined modification using chitosan with a higher deacetylation degree, a 1 mM solution of CuSO solution, and gallic acid resulted in an optimal textile nanocomposite with strong antibacterial activity and moderate Cu-ion release in physiological solutions. Finally, the Cu-based nanostructures partially suppressed the biodegradation of the textile nanocomposite in soil.
对可持续和绿色技术的需求不断增长,促使工业界和研究领域致力于更高效地利用天然和可再生资源。为了解决这个问题,我们开发了一种基于棉花和泥炭纤维的抗菌纺织纳米复合材料,其中固定有铜基纳米结构。为了克服对铜离子的润湿性和亲和力较差的问题,在原位合成纳米结构之前,通过电晕放电对基材进行活化,并涂覆生物聚合物壳聚糖。场发射扫描电子显微镜(FESEM)图像显示,使用没食子酸或抗坏血酸作为绿色还原剂分别导致形成铜基纳米片和大多为球形的纳米颗粒。X射线光电子能谱(XPS)分析表明,形成的纳米结构由CuO和CuO组成。较高浓度的前驱体溶液导致纳米复合材料中铜含量更高,这与还原剂和壳聚糖脱乙酰度无关。大多数合成的纳米复合材料能最大程度地减少细菌和。使用脱乙酰度较高的壳聚糖、1 mM的CuSO溶液和没食子酸进行联合改性,得到了一种具有强抗菌活性且在生理溶液中铜离子释放适中的最佳纺织纳米复合材料。最后,铜基纳米结构部分抑制了纺织纳米复合材料在土壤中的生物降解。