Shen Kangjie, Song Wenyu, Wang Hongye, Wang Lu, Yang Yang, Hu Qianrong, Ren Min, Gao Zixu, Wang Qiangcheng, Zheng Shaoluan, Zhu Ming, Yang Yanwen, Zhang Yong, Wei Chuanyuan, Gu Jianying
Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
Cell Death Discov. 2023 Oct 25;9(1):397. doi: 10.1038/s41420-023-01678-6.
Metastasis is a formidable challenge in the prognosis of melanoma. Accurately predicting the metastatic potential of non-metastatic melanoma (NMM) and determining effective postoperative adjuvant treatments for inhibiting metastasis remain uncertain. In this study, we conducted comprehensive analyses of melanoma metastases using bulk and single-cell RNA sequencing data, enabling the construction of a metastasis score (MET score) through diverse machine-learning algorithms. The reliability and robustness of the MET score were validated using various in vitro assays and in vivo models. Our findings revealed a distinct molecular landscape in metastatic melanoma characterized by the enrichment of metastasis-related pathways, intricate cell-cell communication, and heightened infiltration of pro-angiogenic tumor-associated macrophages compared to NMM. Importantly, patients in the high MET score group exhibited poorer prognoses and an immunosuppressive microenvironment, featuring increased infiltration of regulatory T cells and decreased infiltration of CD8 T cells, compared to the low MET score patient group. Expression of PD-1 was markedly higher in patients with low MET scores. Anti-PD-1 (aPD-1) therapy profoundly affected antitumor immunity activation and metastasis inhibition in these patients. In summary, our study demonstrates the effectiveness of the MET score in predicting melanoma metastatic potential. For patients with low MET scores, aPD-1 therapy may be a potential treatment strategy to inhibit metastasis. Patients with high MET scores may benefit from combination therapies.
转移是黑色素瘤预后面临的一项艰巨挑战。准确预测非转移性黑色素瘤(NMM)的转移潜能并确定抑制转移的有效术后辅助治疗方法仍不明确。在本研究中,我们使用批量和单细胞RNA测序数据对黑色素瘤转移进行了全面分析,通过多种机器学习算法构建了转移评分(MET评分)。使用各种体外试验和体内模型验证了MET评分的可靠性和稳健性。我们的研究结果显示,与NMM相比,转移性黑色素瘤具有独特的分子格局,其特征在于转移相关途径的富集、复杂的细胞间通讯以及促血管生成肿瘤相关巨噬细胞的浸润增加。重要的是,与低MET评分患者组相比,高MET评分组的患者预后较差,且存在免疫抑制微环境,其特征是调节性T细胞浸润增加,CD8 T细胞浸润减少。低MET评分患者中PD-1的表达明显更高。抗PD-1(aPD-1)疗法对这些患者的抗肿瘤免疫激活和转移抑制有深远影响。总之,我们的研究证明了MET评分在预测黑色素瘤转移潜能方面的有效性。对于低MET评分的患者,aPD-1疗法可能是一种抑制转移的潜在治疗策略。高MET评分的患者可能从联合治疗中获益。