Clinical Research Center, National Hospital Organization Nagoya Medical Centergrid.410840.9, Nagoya, Japan.
Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Microbiol Spectr. 2022 Aug 31;10(4):e0150722. doi: 10.1128/spectrum.01507-22. Epub 2022 Jul 27.
High genetic diversity, including the emergence of recombinant forms (RFs), is one of the most prominent features of human immunodeficiency virus type 1 (HIV-1). Conventional detection of HIV-1 RFs requires pretreatments, i.e., cloning or single-genome amplification, to distinguish them from dual- or multiple-infection variants. However, these processes are time-consuming and labor-intensive. Here, we constructed a new nanopore sequencing-based platform that enables us to obtain distinctive genetic information for intersubtype RFs and dual-infection HIV-1 variants by using amplicons of HIV-1 near-full-length genomes or two overlapping half-length genome fragments. Repeated benchmark tests of HIV-1 proviral DNA revealed consensus sequence inference with a reduced error rate, allowing us to obtain sufficiently accurate sequence data. In addition, we applied the platform for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection according to Sanger sequencing-based genotyping tests for HIV-1 drug resistance. For each RF infection case, replicated analyses involving our nanopore sequencing-based platform consistently produced long consecutive analogous consensus sequences with mosaic genomic structures consisting of two different subtypes. In contrast, we detected multiple heterologous sequences in each dual-infection case. These results demonstrate that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Since the genetic diversity of HIV-1 continues to gradually increase, this system will help accelerate full-length genome analysis and molecular epidemiological surveillance for HIV-1. HIV-1 is characterized by large genetic differences, including HIV-1 recombinant forms (RFs). Conventional genetic analyses require time-consuming pretreatments, i.e., cloning or single-genome amplification, to distinguish RFs from dual- or multiple-infection cases. In this study, we developed a new analytical system for HIV-1 sequence data obtained by nanopore sequencing. The error rate of this method was reduced to ~0.06%. We applied this system for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection, which were extracted from 373 cases of HIV patients based on our retrospective analysis of HIV-1 drug resistance genotyping test results. We found that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Our protocol will be useful for epidemiological surveillance to examine HIV-1 transmission as well as for genotypic tests of HIV-1 drug resistance in clinical settings.
高遗传多样性,包括重组形式(RFs)的出现,是人类免疫缺陷病毒 1 型(HIV-1)的最显著特征之一。传统的 HIV-1 RF 检测需要预处理,即克隆或单基因组扩增,以将其与双感染或多重感染变异体区分开来。然而,这些过程既耗时又费力。在这里,我们构建了一个新的纳米孔测序平台,通过使用 HIV-1 全长近基因组或两个重叠的半基因组片段的扩增子,能够获得亚型 RF 和双感染 HIV-1 变体的独特遗传信息。对 HIV-1 前病毒 DNA 的重复基准测试显示,共识序列推断的错误率降低,从而能够获得足够准确的序列数据。此外,我们根据 HIV-1 耐药性基于 Sanger 测序的基因分型测试,应用该平台对 9 例疑似 HIV-1 RF 感染或双重感染的临床样本进行序列分析。对于每个 RF 感染病例,我们的纳米孔测序平台的重复分析均产生了具有镶嵌基因组结构的长连续类似共识序列,该结构由两种不同的亚型组成。相比之下,在每个双重感染病例中,我们都检测到了多个异源序列。这些结果表明,我们的新纳米孔测序平台适用于鉴定亚型 RF 以及双重感染的异源 HIV-1 的全长 HIV-1 基因组结构。由于 HIV-1 的遗传多样性继续逐渐增加,该系统将有助于加速 HIV-1 的全长基因组分析和分子流行病学监测。
HIV-1 的特征是存在较大的遗传差异,包括 HIV-1 重组形式(RFs)。传统的遗传分析需要耗时的预处理,即克隆或单基因组扩增,以将 RF 与双感染或多重感染病例区分开来。在这项研究中,我们开发了一种用于纳米孔测序获得的 HIV-1 序列数据的新分析系统。该方法的错误率降低到约 0.06%。我们应用该系统对 9 例疑似 HIV-1 RF 感染或双重感染的临床样本进行了序列分析,这些样本是根据我们对 HIV-1 耐药性基因分型测试结果的回顾性分析,从 373 例 HIV 患者中提取的。我们发现,我们的新纳米孔测序平台适用于鉴定亚型 RF 以及双重感染的异源 HIV-1 的全长 HIV-1 基因组结构。我们的方案将有助于对 HIV-1 传播进行流行病学监测,以及在临床环境中进行 HIV-1 耐药性的基因分型测试。