Suppr超能文献

NBBt-test:一种用于多种类型 RNA-seq 数据差异分析的通用方法。

NBBt-test: a versatile method for differential analysis of multiple types of RNA-seq data.

机构信息

Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

Center for Biomedical Informatics Research and Innovation (CBIRI), University of Nebraska Medical Center, Omaha, NE, 68198, USA.

出版信息

Sci Rep. 2022 Jul 27;12(1):12833. doi: 10.1038/s41598-022-15762-x.

Abstract

Rapid development of transcriptome sequencing technologies has resulted in a data revolution and emergence of new approaches to study transcriptomic regulation such as alternative splicing, alternative polyadenylation, CRISPR knockout screening in addition to the regular gene expression. A full characterization of the transcriptional landscape of different groups of cells or tissues holds enormous potential for both basic science as well as clinical applications. Although many methods have been developed in the realm of differential gene expression analysis, they all geared towards a particular type of sequencing data and failed to perform well when applied in different types of transcriptomic data. To fill this gap, we offer a negative beta binomial t-test (NBBt-test). NBBt-test provides multiple functions to perform differential analyses of alternative splicing, polyadenylation, CRISPR knockout screening, and gene expression datasets. Both real and large-scale simulation data show superior performance of NBBt-test with higher efficiency, and lower type I error rate and FDR to identify differential isoforms and differentially expressed genes and differential CRISPR knockout screening genes with different sample sizes when compared against the current very popular statistical methods. An R-package implementing NBBt-test is available for downloading from CRAN ( https://CRAN.R-project.org/package=NBBttest ).

摘要

转录组测序技术的快速发展带来了数据革命,并出现了新的方法来研究转录组调控,如选择性剪接、可变多聚腺苷酸化、CRISPR 敲除筛选,除此之外还有常规的基因表达。对不同细胞或组织群体的转录谱进行全面描述,无论是对于基础科学还是临床应用都具有巨大的潜力。尽管在差异基因表达分析领域已经开发了许多方法,但它们都针对特定类型的测序数据,并且在应用于不同类型的转录组数据时效果不佳。为了填补这一空白,我们提供了负二项泊松 t 检验(NBBt-test)。NBBt-test 提供了多种功能,可对选择性剪接、可变多聚腺苷酸化、CRISPR 敲除筛选和基因表达数据集进行差异分析。真实和大规模模拟数据均表明,与当前非常流行的统计方法相比,NBBt-test 在识别差异异构体、差异表达基因和不同样本量的差异 CRISPR 敲除筛选基因方面具有更高的效率、更低的 I 型错误率和 FDR。一个实现 NBBt-test 的 R 包可从 CRAN(https://CRAN.R-project.org/package=NBBttest)下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b31/9329447/6753db910074/41598_2022_15762_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验