Suppr超能文献

具有时变暴露的纵向数据中平均因果效应的估计:非正定性的挑战和模型灵活性的影响。

Estimation of the Average Causal Effect in Longitudinal Data With Time-Varying Exposures: The Challenge of Nonpositivity and the Impact of Model Flexibility.

出版信息

Am J Epidemiol. 2022 Oct 20;191(11):1962-1969. doi: 10.1093/aje/kwac136.

Abstract

There are important challenges to the estimation and identification of average causal effects in longitudinal data with time-varying exposures. Here, we discuss the difficulty in meeting the positivity condition. Our motivating example is the per-protocol analysis of the Effects of Aspirin in Gestation and Reproduction (EAGeR) Trial. We estimated the average causal effect comparing the incidence of pregnancy by 26 weeks that would have occurred if all women had been assigned to aspirin and complied versus the incidence if all women had been assigned to placebo and complied. Using flexible targeted minimum loss-based estimation, we estimated a risk difference of 1.27% (95% CI: -9.83, 12.38). Using a less flexible inverse probability weighting approach, the risk difference was 5.77% (95% CI: -1.13, 13.05). However, the cumulative probability of compliance conditional on covariates approached 0 as follow-up accrued, indicating a practical violation of the positivity assumption, which limited our ability to make causal interpretations. The effects of nonpositivity were more apparent when using a more flexible estimator, as indicated by the greater imprecision. When faced with nonpositivity, one can use a flexible approach and be transparent about the uncertainty, use a parametric approach and smooth over gaps in the data, or target a different estimand that will be less vulnerable to positivity violations.

摘要

在具有时变暴露的纵向数据中,估计和识别平均因果效应存在重要挑战。在这里,我们讨论了满足正定性条件的困难。我们的动机示例是妊娠和生殖中阿司匹林作用(EAGeR)试验的按方案分析。我们通过比较如果所有女性都被分配到阿司匹林且遵守治疗方案与如果所有女性都被分配到安慰剂且遵守治疗方案的情况下 26 周时的妊娠发生率,来估计平均因果效应。使用灵活的基于靶向最小损失的估计方法,我们估计风险差异为 1.27%(95%CI:-9.83,12.38)。使用不太灵活的逆概率加权方法,风险差异为 5.77%(95%CI:-1.13,13.05)。然而,随着随访的进行,协变量条件下的依从性累积概率接近 0,表明实际违反了正定性假设,这限制了我们进行因果解释的能力。当使用更灵活的估计器时,非正定性的影响更加明显,这表明不确定性更大。当面临非正定性时,可以使用灵活的方法并透明地说明不确定性,使用参数方法并对数据中的空白进行平滑处理,或者针对不太容易受到正定性违反影响的不同估计量。

相似文献

3
The Role of the Natural Course in Causal Analysis.自然病程在因果分析中的作用。
Am J Epidemiol. 2022 Jan 24;191(2):341-348. doi: 10.1093/aje/kwab248.
10
On adaptive propensity score truncation in causal inference.自适应倾向评分截断在因果推断中的应用。
Stat Methods Med Res. 2019 Jun;28(6):1741-1760. doi: 10.1177/0962280218774817. Epub 2018 Jul 11.

本文引用的文献

7
An introduction to g methods.G方法简介。
Int J Epidemiol. 2017 Apr 1;46(2):756-762. doi: 10.1093/ije/dyw323.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验