Suppr超能文献

一项比较时变逆概率加权和 G-计算在生存分析中性能的仿真研究。

A Simulation Study Comparing the Performance of Time-Varying Inverse Probability Weighting and G-Computation in Survival Analysis.

出版信息

Am J Epidemiol. 2023 Jan 6;192(1):102-110. doi: 10.1093/aje/kwac162.

Abstract

Inverse probability weighting (IPW) and g-computation are commonly used in time-varying analyses. To inform decisions on which to use, we compared these methods using a plasmode simulation based on data from the Effects of Aspirin in Gestation and Reproduction (EAGeR) Trial (June 15, 2007-July 15, 2011). In our main analysis, we simulated a cohort study of 1,226 individuals followed for up to 10 weeks. The exposure was weekly exercise, and the outcome was time to pregnancy. We controlled for 6 confounding factors: 4 baseline confounders (race, ever smoking, age, and body mass index) and 2 time-varying confounders (compliance with assigned treatment and nausea). We sought to estimate the average causal risk difference by 10 weeks, using IPW and g-computation implemented using a Monte Carlo estimator and iterated conditional expectations (ICE). Across 500 simulations, we compared the bias, empirical standard error (ESE), average standard error, standard error ratio, and 95% confidence interval coverage of each approach. IPW (bias = 0.02; ESE = 0.04; coverage = 92.6%) and Monte Carlo g-computation (bias = -0.01; ESE = 0.03; coverage = 94.2%) performed similarly. ICE g-computation was the least biased but least precise estimator (bias = 0.01; ESE = 0.06; coverage = 93.4%). When choosing an estimator, one should consider factors like the research question, the prevalences of the exposure and outcome, and the number of time points being analyzed.

摘要

逆概率加权(IPW)和 g 估计是常用于时变分析的两种方法。为了确定应该使用哪种方法,我们基于 Effects of Aspirin in Gestation and Reproduction(EAGeR)试验(2007 年 6 月 15 日至 2011 年 7 月 15 日)的数据,通过 plasmode 模拟来比较这两种方法。在我们的主要分析中,我们模拟了一项队列研究,共纳入了 1226 名参与者,随访时间最长达 10 周。暴露因素为每周运动,结局为妊娠时间。我们控制了 6 个混杂因素:4 个基线混杂因素(种族、是否吸烟、年龄和体重指数)和 2 个时变混杂因素(对分配治疗的依从性和恶心)。我们试图使用蒙特卡罗估计器和迭代条件期望(ICE)来实施的 IPW 和 g 估计来估计 10 周时的平均因果风险差异。在 500 次模拟中,我们比较了每种方法的偏差、经验标准误差(ESE)、平均标准误差、标准误差比和 95%置信区间覆盖率。IPW(偏差=0.02;ESE=0.04;覆盖率=92.6%)和蒙特卡罗 g 估计(偏差=-0.01;ESE=0.03;覆盖率=94.2%)的表现相似。ICE g 估计是偏差最小但最不精确的估计器(偏差=0.01;ESE=0.06;覆盖率=93.4%)。在选择估计器时,应考虑研究问题、暴露和结局的流行率以及分析的时间点数量等因素。

相似文献

7
Confounding-adjustment methods for the causal difference in medians.中位数因果差异的调整混杂方法。
BMC Med Res Methodol. 2023 Dec 7;23(1):288. doi: 10.1186/s12874-023-02100-6.

本文引用的文献

3
5
An introduction to g methods.G方法简介。
Int J Epidemiol. 2017 Apr 1;46(2):756-762. doi: 10.1093/ije/dyw323.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验