Suppr超能文献

表征宫颈癌、子宫内膜癌和子宫癌的细胞外基质转录组。

Characterizing the extracellular matrix transcriptome of cervical, endometrial, and uterine cancers.

作者信息

Cook Carson J, Miller Andrew E, Barker Thomas H, Di Yanming, Fogg Kaitlin C

机构信息

Department of Bioengineering, Oregon State University, Corvallis, OR 97331, USA.

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Matrix Biol Plus. 2022 Jul 16;15:100117. doi: 10.1016/j.mbplus.2022.100117. eCollection 2022 Aug.

Abstract

Increasingly, the matrisome, a set of proteins that form the core of the extracellular matrix (ECM) or are closely associated with it, has been demonstrated to play a key role in tumor progression. However, in the context of gynecological cancers, the matrisome has not been well characterized. A holistic, yet targeted, exploration of the tumor microenvironment is critical for better understanding the progression of gynecological cancers, identifying key biomarkers for cancer progression, establishing the role of gene expression in patient survival, and for assisting in the development of new targeted therapies. In this work, we explored the matrisome gene expression profiles of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS) using publicly available RNA-seq data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) portal. We hypothesized that the matrisomal expression patterns of CESC, UCEC, and UCS would be highly distinct with respect to genes which are differentially expressed and hold inferential significance with respect to tumor progression, patient survival, or both. Through a combination of statistical and machine learning analysis techniques, we identified sets of genes and gene networks which characterized each of the gynecological cancer cohorts. Our findings demonstrate that the matrisome is critical for characterizing gynecological cancers and transcriptomic mechanisms of cancer progression and outcome. Furthermore, while the goal of pan-cancer transcriptional analyses is often to highlight the shared attributes of these cancer types, we demonstrate that they are highly distinct diseases which require separate analysis, modeling, and treatment approaches. In future studies, matrisome genes and gene ontology terms that were identified as holding inferential significance for cancer stage and patient survival can be evaluated as potential drug targets and incorporated into models of disease.

摘要

越来越多的证据表明,构成细胞外基质(ECM)核心或与之密切相关的一组蛋白质——基质组,在肿瘤进展中起着关键作用。然而,在妇科癌症的背景下,基质组尚未得到充分的表征。全面而有针对性地探索肿瘤微环境对于更好地理解妇科癌症的进展、识别癌症进展的关键生物标志物、确定基因表达在患者生存中的作用以及协助开发新的靶向治疗至关重要。在这项工作中,我们使用来自癌症基因组图谱(TCGA)和基因型-组织表达(GTEx)门户的公开可用RNA测序数据,探索了宫颈鳞状细胞癌和宫颈管腺癌(CESC)、子宫内膜癌(UCEC)以及子宫癌肉瘤(UCS)的基质组基因表达谱。我们假设,CESC、UCEC和UCS的基质组表达模式在差异表达且对肿瘤进展、患者生存或两者具有推断意义的基因方面将有很大不同。通过统计和机器学习分析技术的结合,我们确定了表征每个妇科癌症队列的基因集和基因网络。我们的研究结果表明,基质组对于表征妇科癌症以及癌症进展和预后的转录组机制至关重要。此外,虽然泛癌转录分析的目标通常是突出这些癌症类型的共同属性,但我们证明它们是高度不同的疾病,需要单独的分析、建模和治疗方法。在未来的研究中,被确定为对癌症分期和患者生存具有推断意义的基质组基因和基因本体术语可以作为潜在的药物靶点进行评估,并纳入疾病模型中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb45/9309672/ebe22c838a4e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验