Suppr超能文献

基于化学位移编码水脂 MRI 的骨密度和成骨椎体的有限元分析及其与质子密度脂肪分数的相关性——一项初步研究。

Finite Element Analysis of Osteoporotic and Osteoblastic Vertebrae and Its Association With the Proton Density Fat Fraction From Chemical Shift Encoding-Based Water-Fat MRI - A Preliminary Study.

机构信息

Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

出版信息

Front Endocrinol (Lausanne). 2022 Jul 11;13:900356. doi: 10.3389/fendo.2022.900356. eCollection 2022.

Abstract

PURPOSE

Osteoporosis is prevalent and entails alterations of vertebral bone and marrow. Yet, the spine is also a common site of metastatic spread. Parameters that can be non-invasively measured and could capture these alterations are the volumetric bone mineral density (vBMD), proton density fat fraction (PDFF) as an estimate of relative fat content, and failure displacement and load from finite element analysis (FEA) for assessment of bone strength. This study's purpose was to investigate if osteoporotic and osteoblastic metastatic changes in lumbar vertebrae can be differentiated based on the abovementioned parameters (vBMD, PDFF, and measures from FEA), and how these parameters correlate with each other.

MATERIALS AND METHODS

Seven patients (3 females, median age: 77.5 years) who received 3-Tesla magnetic resonance imaging (MRI) and multi-detector computed tomography (CT) of the lumbar spine and were diagnosed with either osteoporosis (4 patients) or diffuse osteoblastic metastases (3 patients) were included. Chemical shift encoding-based water-fat MRI (CSE-MRI) was used to extract the PDFF, while vBMD was extracted after automated vertebral body segmentation using CT. Segmentation masks were used for FEA-based failure displacement and failure load calculations. Failure displacement, failure load, and PDFF were compared between patients with osteoporotic vertebrae versus patients with osteoblastic metastases, considering non-fractured vertebrae (L1-L4). Associations between those parameters were assessed using Spearman correlation.

RESULTS

Median vBMD was 59.3 mg/cm in osteoporotic patients. Median PDFF was lower in the metastatic compared to the osteoporotic patients (11.9% . 43.8%, p=0.032). Median failure displacement and failure load were significantly higher in metastatic compared to osteoporotic patients (0.874 mm . 0.348 mm, 29,589 N . 3,095 N, p=0.034 each). A strong correlation was noted between PDFF and failure displacement (rho -0.679, p=0.094). A very strong correlation was noted between PDFF and failure load (rho -0.893, p=0.007).

CONCLUSION

PDFF as well as failure displacement and load allowed to distinguish osteoporotic from diffuse osteoblastic vertebrae. Our findings further show strong associations between PDFF and failure displacement and load, thus may indicate complimentary pathophysiological associations derived from two non-invasive techniques (CSE-MRI and CT) that inherently measure different properties of vertebral bone and marrow.

摘要

目的

骨质疏松症普遍存在,会导致椎体骨和骨髓发生改变。然而,脊柱也是转移性扩散的常见部位。可以通过非侵入性测量的参数,并可以捕获这些改变的是容积骨矿物质密度(vBMD)、质子密度脂肪分数(PDFF),作为相对脂肪含量的估计,以及有限元分析(FEA)的失效位移和负载,以评估骨强度。本研究的目的是探讨基于上述参数(vBMD、PDFF 和 FEA 测量值)是否可以区分腰椎的骨质疏松性和成骨性转移变化,以及这些参数如何相互关联。

材料和方法

本研究纳入了 7 名(3 名女性,中位年龄:77.5 岁)接受 3T 磁共振成像(MRI)和多排 CT 扫描腰椎并被诊断为骨质疏松症(4 名患者)或弥漫性成骨性转移(3 名患者)的患者。采用化学位移编码基于水脂 MRI(CSE-MRI)提取 PDFF,而 vBMD 则使用 CT 对自动椎体分割后提取。使用分割掩模进行基于 FEA 的失效位移和失效负载计算。在考虑非骨折椎体(L1-L4)的情况下,比较骨质疏松性椎体患者与成骨性转移性椎体患者之间的失败位移、失败负载和 PDFF。使用 Spearman 相关性评估这些参数之间的关联。

结果

骨质疏松症患者的中位 vBMD 为 59.3mg/cm。转移性患者的 PDFF 中位数低于骨质疏松症患者(11.9%比 43.8%,p=0.032)。与骨质疏松症患者相比,转移性患者的中位失效位移和失效负载显著更高(0.874mm比 0.348mm,29589N 比 3095N,p=0.034 各)。PDFF 与失效位移之间存在很强的相关性(rho=-0.679,p=0.094)。PDFF 与失效负载之间存在很强的相关性(rho=-0.893,p=0.007)。

结论

PDFF 以及失效位移和负载可以区分骨质疏松性和弥漫性成骨性椎体。我们的研究结果进一步表明 PDFF 与失效位移和负载之间存在很强的关联,因此可能表明源自两种非侵入性技术(CSE-MRI 和 CT)的补充病理生理学关联,这两种技术本质上测量了椎体骨和骨髓的不同特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验