Suppr超能文献

验证性因子分析混合方法中的贝叶斯因子选择

Bayesian factor selection in a hybrid approach to confirmatory factor analysis.

作者信息

Nie Junyu, Yu Jihnhee

机构信息

Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, NY, USA.

出版信息

J Appl Stat. 2024 Apr 3;51(15):3005-3038. doi: 10.1080/02664763.2024.2335568. eCollection 2024.

Abstract

To investigate latent structures of measured variables, various factor structures are used for confirmatory factor analysis, including higher-order models and more flexible bifactor models. In practice, measured variables may also have relatively small or moderate non-zero loadings on multiple group factors, which form cross loadings. The selection of correct and 'identifiable' latent structures is important to evaluate an impact of constructs of interest in the confirmatory factor analysis model. Herein, we first discuss the identifiability condition that allows several cross loadings of the models with underlying bifactor structures. Then, we implement Bayesian variable selection allowing cross loadings on bifactor structures using the spike and slab prior. Our approaches evaluate the inclusion probability for all group factor loadings and utilize known underlying structural information, making our approaches not entirely exploratory. Through a Monte Carlo study, we demonstrate that our methods can provide more accurately identified results than other available methods. For the application, the SF-12 version 2 scale, a self-report health-related quality of life survey is used. The model selected by our proposed methods is more parsimonious and has a better fit index compared to other models including the ridge prior selection and strict bifactor model.

摘要

为了研究测量变量的潜在结构,各种因子结构被用于验证性因子分析,包括高阶模型和更灵活的双因子模型。在实际应用中,测量变量在多个组因子上也可能有相对较小或中等的非零载荷,从而形成交叉载荷。选择正确且“可识别”的潜在结构对于评估验证性因子分析模型中感兴趣的构念的影响至关重要。在此,我们首先讨论允许具有潜在双因子结构的模型存在多个交叉载荷的可识别性条件。然后,我们使用尖峰和平板先验实现允许双因子结构上存在交叉载荷的贝叶斯变量选择。我们的方法评估所有组因子载荷的包含概率,并利用已知的潜在结构信息,这使得我们的方法并非完全探索性的。通过蒙特卡罗研究,我们证明我们的方法比其他现有方法能提供更准确的识别结果。在应用方面,使用了SF - 12第2版量表,这是一项与健康相关的生活质量自我报告调查。与包括岭先验选择和严格双因子模型在内的其他模型相比,我们提出的方法选择的模型更简洁,拟合指数更好。

相似文献

1
Bayesian factor selection in a hybrid approach to confirmatory factor analysis.验证性因子分析混合方法中的贝叶斯因子选择
J Appl Stat. 2024 Apr 3;51(15):3005-3038. doi: 10.1080/02664763.2024.2335568. eCollection 2024.
9
Dealing with Reflection Invariance in Bayesian Factor Analysis.贝叶斯因子分析中对反射不变性的处理。
Psychometrika. 2017 Jun;82(2):295-307. doi: 10.1007/s11336-017-9564-y. Epub 2017 Mar 13.

本文引用的文献

3
Bayesian Estimation of Single-Test Reliability Coefficients.贝叶斯估计单测可靠性系数。
Multivariate Behav Res. 2022 Jul-Aug;57(4):620-641. doi: 10.1080/00273171.2021.1891855. Epub 2021 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验