Nie Junyu, Yu Jihnhee
Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, NY, USA.
J Appl Stat. 2024 Apr 3;51(15):3005-3038. doi: 10.1080/02664763.2024.2335568. eCollection 2024.
To investigate latent structures of measured variables, various factor structures are used for confirmatory factor analysis, including higher-order models and more flexible bifactor models. In practice, measured variables may also have relatively small or moderate non-zero loadings on multiple group factors, which form cross loadings. The selection of correct and 'identifiable' latent structures is important to evaluate an impact of constructs of interest in the confirmatory factor analysis model. Herein, we first discuss the identifiability condition that allows several cross loadings of the models with underlying bifactor structures. Then, we implement Bayesian variable selection allowing cross loadings on bifactor structures using the spike and slab prior. Our approaches evaluate the inclusion probability for all group factor loadings and utilize known underlying structural information, making our approaches not entirely exploratory. Through a Monte Carlo study, we demonstrate that our methods can provide more accurately identified results than other available methods. For the application, the SF-12 version 2 scale, a self-report health-related quality of life survey is used. The model selected by our proposed methods is more parsimonious and has a better fit index compared to other models including the ridge prior selection and strict bifactor model.
为了研究测量变量的潜在结构,各种因子结构被用于验证性因子分析,包括高阶模型和更灵活的双因子模型。在实际应用中,测量变量在多个组因子上也可能有相对较小或中等的非零载荷,从而形成交叉载荷。选择正确且“可识别”的潜在结构对于评估验证性因子分析模型中感兴趣的构念的影响至关重要。在此,我们首先讨论允许具有潜在双因子结构的模型存在多个交叉载荷的可识别性条件。然后,我们使用尖峰和平板先验实现允许双因子结构上存在交叉载荷的贝叶斯变量选择。我们的方法评估所有组因子载荷的包含概率,并利用已知的潜在结构信息,这使得我们的方法并非完全探索性的。通过蒙特卡罗研究,我们证明我们的方法比其他现有方法能提供更准确的识别结果。在应用方面,使用了SF - 12第2版量表,这是一项与健康相关的生活质量自我报告调查。与包括岭先验选择和严格双因子模型在内的其他模型相比,我们提出的方法选择的模型更简洁,拟合指数更好。