文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同单色光组合对盲肠微生物群落组成和盲肠扁桃体 T 淋巴细胞增殖的影响。

Effects of Different Monochromatic Light Combinations on Cecal Microbiota Composition and Cecal Tonsil T Lymphocyte Proliferation.

机构信息

Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China.

出版信息

Front Immunol. 2022 Jul 12;13:849780. doi: 10.3389/fimmu.2022.849780. eCollection 2022.


DOI:10.3389/fimmu.2022.849780
PMID:35903105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9314779/
Abstract

Emerging data demonstrated that the gut microbiota plays an important role in protecting the integrity of the epithelial barrier, forming a mucosal immune system, and maintaining intestinal homeostasis through its metabolites. However, the intestinal microbiota community can be affected by environmental factors, such as litter, photoperiod, or temperature. Thus, we investigated the effect of different monochromatic light combinations on cecal microbiota composition as well as explored the molecular mechanism by how the external light color information mediate cecal tonsil T lymphocyte proliferation. In this study, a total of 160 chicks were exposed to monochromatic light [red (R), green (G), blue (B), or white (W) light] or green and blue monochromatic light combination (G→B) from P0 to P42. The 16S rRNA microbial sequencing results showed that the richness and diversity of the cecum microbiota and the abundance of and were significantly increased in the G→B. With consistency in the upregulation of antioxidant enzyme ability and downregulation of pro-inflammation levels in the cecum, we observed an increase in the number of goblet cells, secretory IgA+ cells, tight junction protein (occludin, ZO-1, and claudin-1) and MUC-2 expression in the cecum of the G→B. The metabolomics analysis revealed that the relative abundance of metabolites related to butyrate was significantly increased in G→B. In an experiment, we found that butyrate could effectively induce T lymphocyte proliferation and cyclin D1 protein expression. However, these butyrate responses were abrogated by HDAC3 agonists, STAT3 antagonists, or mTOR antagonists but were mimicked by GPR43 agonists or HDAC3 antagonists. Thus, we suggested that G→B can indirectly affect the composition of cecal microbiota as well as increase the relative abundance of and and butyrate production by reducing the level of oxidative stress in the cecum. Exogenous butyrate could promote the T lymphocyte proliferation of cecal tonsil by activating the GPR43/HDAC3/p-STAT3/mTOR pathways.

摘要

新兴数据表明,肠道微生物群在保护上皮屏障完整性、形成黏膜免疫系统和维持肠道内环境平衡方面发挥着重要作用,其代谢产物在其中起到了关键作用。然而,肠道微生物群落会受到环境因素的影响,例如垫料、光周期或温度。因此,我们研究了不同单色光组合对盲肠微生物群落组成的影响,并探讨了外部光颜色信息如何通过调节盲肠扁桃体 T 淋巴细胞增殖来介导盲肠扁桃体 T 淋巴细胞增殖的分子机制。在这项研究中,总共 160 只小鸡从 P0 到 P42 暴露于单色光(R、G、B 或 W 光)或绿蓝单色光组合(G→B)中。16S rRNA 微生物测序结果显示,G→B 组盲肠微生物群落的丰富度和多样性以及丰度显著增加。同时,盲肠中的抗氧化酶能力上调和促炎水平下调一致,我们观察到盲肠中杯状细胞、分泌型 IgA+细胞、紧密连接蛋白(occludin、ZO-1 和 claudin-1)和 MUC-2 的表达增加。代谢组学分析显示,G→B 中与丁酸相关的代谢物相对丰度显著增加。在实验中,我们发现丁酸可以有效诱导 T 淋巴细胞增殖和 cyclin D1 蛋白表达。然而,这些丁酸反应被 HDAC3 激动剂、STAT3 拮抗剂或 mTOR 拮抗剂阻断,但被 GPR43 激动剂或 HDAC3 拮抗剂模拟。因此,我们认为 G→B 可以通过降低盲肠中的氧化应激水平,间接影响盲肠微生物群落的组成,增加和的相对丰度和丁酸的产生。外源性丁酸可以通过激活 GPR43/HDAC3/p-STAT3/mTOR 通路促进盲肠扁桃体 T 淋巴细胞增殖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/8a32a7016105/fimmu-13-849780-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/ec520b3c0fed/fimmu-13-849780-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/0a454c33cb94/fimmu-13-849780-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/3e8bc49a78ea/fimmu-13-849780-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/12309d15b886/fimmu-13-849780-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/8aedd991e350/fimmu-13-849780-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/96cb34eb45c7/fimmu-13-849780-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/cecd9d997da8/fimmu-13-849780-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/2eabb9765c3e/fimmu-13-849780-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/a73ac48b729d/fimmu-13-849780-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/ff8af7ea8ccc/fimmu-13-849780-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/892d11331518/fimmu-13-849780-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/8a32a7016105/fimmu-13-849780-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/ec520b3c0fed/fimmu-13-849780-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/0a454c33cb94/fimmu-13-849780-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/3e8bc49a78ea/fimmu-13-849780-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/12309d15b886/fimmu-13-849780-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/8aedd991e350/fimmu-13-849780-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/96cb34eb45c7/fimmu-13-849780-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/cecd9d997da8/fimmu-13-849780-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/2eabb9765c3e/fimmu-13-849780-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/a73ac48b729d/fimmu-13-849780-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/ff8af7ea8ccc/fimmu-13-849780-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/892d11331518/fimmu-13-849780-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab02/9314779/8a32a7016105/fimmu-13-849780-g012.jpg

相似文献

[1]
Effects of Different Monochromatic Light Combinations on Cecal Microbiota Composition and Cecal Tonsil T Lymphocyte Proliferation.

Front Immunol. 2022

[2]
Blue Light Alters the Composition of the Jejunal Microbiota and Promotes the Development of the Small Intestine by Reducing Oxidative Stress.

Antioxidants (Basel). 2022-1-29

[3]
A Green and Blue Monochromatic Light Combination Therapy Reduces Oxidative Stress and Enhances B-Lymphocyte Proliferation through Promoting Melatonin Secretion.

Oxid Med Cell Longev. 2021

[4]
Alterations of intestinal mucosal barrier, cecal microbiota diversity, composition, and metabolites of yellow-feathered broilers under chronic corticosterone-induced stress: a possible mechanism underlying the anti-growth performance and glycolipid metabolism disorder.

Microbiol Spectr. 2024-5-2

[5]
Normal Light-Dark and Short-Light Cycles Regulate Intestinal Inflammation, Circulating Short-chain Fatty Acids and Gut Microbiota in Gene Knockout Mice.

Front Immunol. 2022

[6]
Effects of Eimeria tenella infection on the barrier damage and microbiota diversity of chicken cecum.

Poult Sci. 2020-1-22

[7]
Butyrate Ameliorates Insufficient Sleep-Induced Intestinal Mucosal Damage in Humans and Mice.

Microbiol Spectr. 2023-2-14

[8]
Melatonin Nuclear Receptors Mediate Green-and-Blue-Monochromatic-Light-Combinations-Inhibited B Lymphocyte Apoptosis in the Bursa of Chickens via Reducing Oxidative Stress and Nfκb Expression.

Antioxidants (Basel). 2022-4-8

[9]
The microbiota structure in the cecum of laying hens contributes to dissimilar HS production.

BMC Genomics. 2019-10-23

[10]
Melatonin-Mediated Colonic Microbiota Metabolite Butyrate Prevents Acute Sleep Deprivation-Induced Colitis in Mice.

Int J Mol Sci. 2021-11-2

引用本文的文献

[1]
Monochromatic Light Impacts the Growth Performance, Intestinal Morphology, Barrier Function, Antioxidant Status, and Microflora of Yangzhou Geese.

Animals (Basel). 2025-6-19

[2]
Effects of different photoperiods on melatonin level, cecal microbiota and breast muscle morphology of broiler chickens.

Front Microbiol. 2025-3-25

[3]
Effects of Different Photoperiods on Growth Performance, Glucose Metabolism, Acetylcholine, and Its Relative Acetylcholine Receptor Modulation in Broiler Chickens.

Animals (Basel). 2024-10-17

[4]
The effect and potential mechanism of inulin combined with fecal microbiota transplantation on early intestinal immune function in chicks.

Sci Rep. 2024-7-23

[5]
Effects of Dietary and Supplementation on the Intestinal Stem Cell Proliferation, Immunity, and Ileal Microbiota of Broiler Chickens Challenged by Coccidia and .

Animals (Basel). 2023-12-15

[6]
Influence of Different Light Spectra on Melatonin Synthesis by the Pineal Gland and Influence on the Immune System in Chickens.

Animals (Basel). 2023-6-24

本文引用的文献

[1]
Dietary Supplementation With Ameliorates Compromise of Growth Performance by Modulating Short-Chain Fatty Acids and Intestinal Dysbiosis in Broilers Under Challenge.

Front Nutr. 2021-10-14

[2]
Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions.

Trends Immunol. 2021-7

[3]
and Co-Cultivation Extract Affects In Vitro Degradation, Fermentation Characteristics, and Bacterial Composition in a Diet-Specific Manner.

Animals (Basel). 2021-4-26

[4]
A Green and Blue Monochromatic Light Combination Therapy Reduces Oxidative Stress and Enhances B-Lymphocyte Proliferation through Promoting Melatonin Secretion.

Oxid Med Cell Longev. 2021

[5]
Linkage between the intestinal microbiota and residual feed intake in broiler chickens.

J Anim Sci Biotechnol. 2021-2-11

[6]
Butyrate mediates anti-inflammatory effects of in intestinal epithelial cells through .

Gut Microbes. 2020-11-9

[7]
The Gut Microbiota at the Service of Immunometabolism.

Cell Metab. 2020-10-6

[8]
Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine.

Annu Rev Immunol. 2020-4-26

[9]
Microbiome alterations in IBS.

Gut. 2020-12

[10]
Composition and Function of Chicken Gut Microbiota.

Animals (Basel). 2020-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索