文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

长非编码 RNA CASC11 与 YBX1 相互作用,通过抑制 p53 通路促进前列腺癌的进展。

Long non‑coding RNA CASC11 interacts with YBX1 to promote prostate cancer progression by suppressing the p53 pathway.

机构信息

Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P.R. China.

Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.

出版信息

Int J Oncol. 2022 Sep;61(3). doi: 10.3892/ijo.2022.5400. Epub 2022 Jul 29.


DOI:10.3892/ijo.2022.5400
PMID:35904175
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9374466/
Abstract

Prostate cancer (PCa) is one of the principal causes of cancer‑related death worldwide. The roles and mechanisms of long non‑coding RNA (lncRNA) involved in the development of PCa remain incompletely understood. The present study aimed to investigate the role and mechanism of lncRNA in PCa tumorigenesis. In the present study, lncRNA cancer susceptibility candidate 11 (CASC11) was revealed to be a crucial regulator of PCa progression. The expression profiles of CASC11 in PCa were identified through analysis of The Cancer Genome Atlas and Gene Expression Omnibus datasets, and validated in human PCa specimens and cell lines. Gain‑ and loss‑of‑function assays were utilized to explore the biological role of CASC11 in PCa initiation and progression. RNA‑sequencing, RNA pull‑down and RNA immunoprecipitation analyses were used to explore potential mechanisms with which CASC11 may be associated. Rescue experiments were further conducted to confirm this association. The present results revealed that CASC11 was dominantly distributed in the nuclei of PCa cells, and was highly expressed in PCa tissues and cells. Overexpression of CASC11 was markedly associated with increased tumor proliferation and migratory ability. Functionally, decreased proliferation and migration, as well as inhibited xenograft tumor growth, were observed in CASC11‑silenced PCa cells, whereas the opposite effects were detected in CASC11‑overexpressing cells. Mechanistically, CASC11 promoted progression of the cell cycle and competitively interacted with Y‑box binding protein 1 (YBX1) to block the p53 pathway. Given this, poly (β‑amino ester) (PBAE)/small interfering RNA‑CASC11 (si‑CASC11) nanoparticles were applied to inhibit CASC11 expression and enhance the antitumor effect . The results revealed that PBAE/si‑CASC11 nanoparticles augmented the antitumor efficacy of CASC11 knockdown . In conclusion, the present study suggested that CASC11 may regulate PCa progression and elucidated a novel CASC11/YBX1/p53 signaling axis, providing a potential lncRNA‑directed therapeutic strategy particularly for the treatment of patients with PCa.

摘要

前列腺癌 (PCa) 是全球癌症相关死亡的主要原因之一。长链非编码 RNA (lncRNA) 在 PCa 发展中的作用和机制尚不完全清楚。本研究旨在探讨 lncRNA 在 PCa 发生中的作用和机制。本研究发现,lncRNA 癌症易感性候选基因 11 (CASC11) 是 PCa 进展的关键调节因子。通过分析癌症基因组图谱和基因表达综合数据库,确定了 CASC11 在 PCa 中的表达谱,并在人 PCa 标本和细胞系中进行了验证。通过 gain- 和 loss-功能测定来探讨 CASC11 在 PCa 起始和进展中的生物学作用。利用 RNA 测序、RNA 下拉和 RNA 免疫沉淀分析来探讨 CASC11 可能与之相关的潜在机制。进一步进行了挽救实验来证实这种关联。本研究结果表明,CASC11 主要分布在 PCa 细胞的核内,在 PCa 组织和细胞中高表达。CASC11 的过表达与肿瘤增殖和迁移能力的增加显著相关。功能上,CASC11 沉默的 PCa 细胞中观察到增殖和迁移减少以及异种移植肿瘤生长受到抑制,而在 CASC11 过表达的细胞中则检测到相反的效果。机制上,CASC11 促进细胞周期的进展,并与 Y 盒结合蛋白 1 (YBX1) 竞争相互作用以阻断 p53 通路。鉴于此,应用聚 (β-氨基酯) (PBAE)/小干扰 RNA-CASC11 (si-CASC11) 纳米粒抑制 CASC11 表达并增强抗肿瘤作用。结果表明,PBAE/si-CASC11 纳米粒增强了 CASC11 敲低的抗肿瘤疗效。综上所述,本研究表明 CASC11 可能调节 PCa 的进展,并阐明了一个新的 CASC11/YBX1/p53 信号轴,为特别是治疗 PCa 患者提供了一种潜在的 lncRNA 靶向治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/0ff67a3a46c2/IJO-61-3-05400-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/e4d014f4943b/IJO-61-3-05400-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/2d3273ff2c83/IJO-61-3-05400-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/0d7dc0ae5b06/IJO-61-3-05400-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/d3b54c4ba350/IJO-61-3-05400-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/86d18b8fb8e4/IJO-61-3-05400-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/55cb8ecdde54/IJO-61-3-05400-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/40830f803f6a/IJO-61-3-05400-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/f781079b414b/IJO-61-3-05400-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/0ff67a3a46c2/IJO-61-3-05400-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/e4d014f4943b/IJO-61-3-05400-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/2d3273ff2c83/IJO-61-3-05400-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/0d7dc0ae5b06/IJO-61-3-05400-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/d3b54c4ba350/IJO-61-3-05400-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/86d18b8fb8e4/IJO-61-3-05400-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/55cb8ecdde54/IJO-61-3-05400-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/40830f803f6a/IJO-61-3-05400-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/f781079b414b/IJO-61-3-05400-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2d/9374466/0ff67a3a46c2/IJO-61-3-05400-g08.jpg

相似文献

[1]
Long non‑coding RNA CASC11 interacts with YBX1 to promote prostate cancer progression by suppressing the p53 pathway.

Int J Oncol. 2022-9

[2]
The previously uncharacterized lncRNA APP promotes prostate cancer progression by acting as a competing endogenous RNA.

Int J Cancer. 2019-6-4

[3]
CASC11 promotes aggressiveness of prostate cancer cells through miR-145/IGF1R axis.

Prostate Cancer Prostatic Dis. 2021-9

[4]
LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network.

Theranostics. 2020

[5]
Long non-coding RNA LINP1 promotes the malignant progression of prostate cancer by regulating p53.

Eur Rev Med Pharmacol Sci. 2018-7

[6]
Long noncoding RNA PRKCQ-AS1 promotes CRC cell proliferation and migration via modulating miR-1287-5p/YBX1 axis.

J Cell Biochem. 2020-10

[7]
LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway.

Cell Cycle. 2018-9-10

[8]
Long noncoding RNA Linc01612 represses hepatocellular carcinoma progression by regulating miR-494/ATF3/p53 axis and promoting ubiquitination of YBX1.

Int J Biol Sci. 2022

[9]
A novel androgen-reduced prostate-specific lncRNA, PSLNR, inhibits prostate-cancer progression in part by regulating the p53-dependent pathway.

Prostate. 2019-9

[10]
LncRNA PlncRNA-1 accelerates the progression of prostate cancer by regulating PTEN/Akt axis.

Aging (Albany NY). 2021-4-13

引用本文的文献

[1]
YBX1: an RNA/DNA-binding protein that affects disease progression.

Front Oncol. 2025-7-29

[2]
Role of long non-coding RNAs and natural products in prostate cancer: insights into key signaling pathways.

Funct Integr Genomics. 2025-1-17

[3]
lncRNA CASC11 regulates the progress of delayed fracture healing via sponging miR-150-3p.

J Orthop Surg Res. 2024-11-14

[4]
Apolipoprotein L3 inhibits breast cancer proliferation and modulates cell cycle via the P53 pathway.

J Cancer. 2024-7-2

[5]
[Not Available].

Comput Struct Biotechnol J. 2023-12-20

[6]
A review on the role of CASC11 in cancers.

Front Cell Dev Biol. 2023-6-23

[7]
Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer.

Front Oncol. 2023-3-21

[8]
VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization.

Int J Oncol. 2023-3

[9]
Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs.

Cells. 2022-9-23

本文引用的文献

[1]
Critical roles of the lncRNA CASC11 in tumor progression and cancer metastasis: The biomarker and therapeutic target potential.

Genes Dis. 2020-12-2

[2]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[3]
Genome-editing prodrug: Targeted delivery and conditional stabilization of CRISPR-Cas9 for precision therapy of inflammatory disease.

Sci Adv. 2021-12-10

[4]
The prostate cancer landscape in Europe: Current challenges, future opportunities.

Cancer Lett. 2022-2-1

[5]
Loss of Long Noncoding RNA in Prostate Cancer Augments Androgen Receptor Expression and Enzalutamide Resistance.

Cancer Res. 2022-1-1

[6]
ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma.

Mol Cancer. 2021-11-5

[7]
Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP.

Proc Natl Acad Sci U S A. 2021-7-20

[8]
m A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization.

Clin Transl Med. 2021-6

[9]
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics.

Pharmacol Ther. 2021-12

[10]
The treatment landscape of metastatic prostate cancer.

Cancer Lett. 2021-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索