Suppr超能文献

MedTric:一种用于评估多标签计算诊断系统的临床适用指标。

MedTric : A clinically applicable metric for evaluation of multi-label computational diagnostic systems.

机构信息

Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, West Bengal, India.

TCS Research, Tata Consultancy Services, Kolkata, West Bengal, India.

出版信息

PLoS One. 2023 Aug 10;18(8):e0283895. doi: 10.1371/journal.pone.0283895. eCollection 2023.

Abstract

When judging the quality of a computational system for a pathological screening task, several factors seem to be important, like sensitivity, specificity, accuracy, etc. With machine learning based approaches showing promise in the multi-label paradigm, they are being widely adopted to diagnostics and digital therapeutics. Metrics are usually borrowed from machine learning literature, and the current consensus is to report results on a diverse set of metrics. It is infeasible to compare efficacy of computational systems which have been evaluated on different sets of metrics. From a diagnostic utility standpoint, the current metrics themselves are far from perfect, often biased by prevalence of negative samples or other statistical factors and importantly, they are designed to evaluate general purpose machine learning tasks. In this paper we outline the various parameters that are important in constructing a clinical metric aligned with diagnostic practice, and demonstrate their incompatibility with existing metrics. We propose a new metric, MedTric that takes into account several factors that are of clinical importance. MedTric is built from the ground up keeping in mind the unique context of computational diagnostics and the principle of risk minimization, penalizing missed diagnosis more harshly than over-diagnosis. MedTric is a unified metric for medical or pathological screening system evaluation. We compare this metric against other widely used metrics and demonstrate how our system outperforms them in key areas of medical relevance.

摘要

在判断病理筛查任务的计算系统质量时,似乎有几个因素很重要,如敏感性、特异性、准确性等。基于机器学习的方法在多标签范例中显示出了前景,因此被广泛应用于诊断和数字治疗。指标通常是从机器学习文献中借鉴而来的,目前的共识是在各种指标上报告结果。比较在不同指标集上评估的计算系统的功效是不可行的。从诊断效用的角度来看,目前的指标本身还远不完善,往往受到负样本的流行或其他统计因素的影响,重要的是,它们是为评估通用机器学习任务而设计的。在本文中,我们概述了构建与诊断实践一致的临床指标时的各种重要参数,并证明它们与现有指标不兼容。我们提出了一种新的指标 MedTric,它考虑了与临床诊断相关的几个重要因素。MedTric 是从底层构建的,牢记计算诊断的独特背景和风险最小化原则,对漏诊的惩罚比过度诊断更严厉。MedTric 是用于医疗或病理筛查系统评估的统一指标。我们将这个指标与其他广泛使用的指标进行了比较,并展示了我们的系统在医疗相关性的关键领域是如何表现得更好的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f5/10414580/d4befc37f439/pone.0283895.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验