Suppr超能文献

潜在的肠道微生物特征可用于非侵入性检测血吸虫病。

Potential Gut Microbiota Features for Non-Invasive Detection of Schistosomiasis.

机构信息

Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.

出版信息

Front Immunol. 2022 Jul 14;13:941530. doi: 10.3389/fimmu.2022.941530. eCollection 2022.

Abstract

The gut microbiota has been identified as a predictive biomarker for various diseases. However, few studies focused on the diagnostic accuracy of gut microbiota derived-signature for predicting hepatic injuries in schistosomiasis. Here, we characterized the gut microbiomes from 94 human and mouse stool samples using 16S rRNA gene sequencing. The diversity and composition of gut microbiomes in infection-induced disease changed significantly. Gut microbes, such as , , , and , showed a significant correlation with the level of hepatic granuloma, fibrosis, hydroxyproline, ALT or AST in infection-induced disease. We identified a range of gut bacterial features to distinguish schistosomiasis from hepatic injuries using the random forest classifier model, LEfSe and STAMP analysis. Significant features , , and and their combinations have a robust predictive accuracy (AUC: from 0.8182 to 0.9639) for detecting liver injuries induced by infection in humans and mice. Our study revealed associations between gut microbiota features and physiopathology and serological shifts of schistosomiasis and provided preliminary evidence for novel gut microbiota-derived features for the non-invasive detection of schistosomiasis.

摘要

肠道微生物群已被确定为各种疾病的预测生物标志物。然而,很少有研究关注肠道微生物衍生特征对预测血吸虫病肝损伤的诊断准确性。在这里,我们使用 16S rRNA 基因测序对 94 个人类和小鼠粪便样本的肠道微生物组进行了表征。感染引起的疾病中肠道微生物组的多样性和组成发生了显著变化。肠道微生物,如 、 、 、 和 ,与感染引起的疾病中的肝肉芽肿、纤维化、羟脯氨酸、ALT 或 AST 水平呈显著相关。我们使用随机森林分类器模型、LEfSe 和 STAMP 分析,确定了一系列肠道细菌特征,以区分血吸虫病和肝损伤。特征 、 、 和 及其组合对人类和小鼠感染引起的肝损伤具有较强的预测准确性(AUC:从 0.8182 到 0.9639)。我们的研究揭示了肠道微生物群特征与血吸虫病的病理生理学和血清学变化之间的关联,并为非侵入性检测血吸虫病的新型肠道微生物衍生特征提供了初步证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe7/9330540/0967b11928c1/fimmu-13-941530-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验