Suppr超能文献

SILCS-RNA:小分子靶向 RNA 的基于结构的药物设计方法。

SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules.

机构信息

Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.

出版信息

J Chem Theory Comput. 2022 Sep 13;18(9):5672-5691. doi: 10.1021/acs.jctc.2c00381. Epub 2022 Aug 1.

Abstract

RNA molecules can act as potential drug targets in different diseases, as their dysregulated expression or misfolding can alter various cellular processes. Noncoding RNAs account for ∼70% of the human genome, and these molecules can have complex tertiary structures that present a great opportunity for targeting by small molecules. In the present study, the site identification by ligand competitive saturation (SILCS) computational approach is extended to target RNA, termed SILCS-RNA. Extensions to the method include an enhanced oscillating excess chemical potential protocol for the grand canonical Monte Carlo calculations and individual simulations of the neutral and charged solutes from which the SILCS functional group affinity maps (FragMaps) are calculated for subsequent binding site identification and docking calculations. The method is developed and evaluated against seven RNA targets and their reported small molecule ligands. SILCS-RNA provides a detailed characterization of the functional group affinity pattern in the small molecule binding sites, recapitulating the types of functional groups present in the ligands. The developed method is also shown to be useful for identification of new potential binding sites and identifying ligand moieties that contribute to binding, granular information that can facilitate ligand design. However, limitations in the method are evident including the ability to map the regions of binding sites occupied by ligand phosphate moieties and to fully account for the wide range of conformational heterogeneity in RNA associated with binding of different small molecules, emphasizing inherent challenges associated with applying computer-aided drug design methods to RNA. While limitations are present, the current study indicates how the SILCS-RNA approach may enhance drug discovery efforts targeting RNAs with small molecules.

摘要

RNA 分子可以作为不同疾病的潜在药物靶点,因为它们的表达失调或错误折叠会改变各种细胞过程。非编码 RNA 占人类基因组的∼70%,这些分子可以具有复杂的三级结构,为小分子靶向提供了很好的机会。在本研究中,配体竞争饱和(SILCS)计算方法的靶标识别扩展到 RNA,称为 SILCS-RNA。该方法的扩展包括增强的超震荡过剩化学势协议,用于吉布斯蒙特卡罗计算和中性和带电溶质的单独模拟,从中计算 SILCS 功能组亲和力图(FragMaps),用于随后的结合部位识别和对接计算。该方法是针对七个 RNA 靶标及其报道的小分子配体开发和评估的。SILCS-RNA 提供了小分子结合部位功能组亲和力模式的详细特征,再现了配体中存在的功能组类型。所开发的方法还被证明可用于识别新的潜在结合部位和识别与结合相关的配体部分,提供有助于配体设计的粒度信息。然而,该方法存在局限性,包括能够映射配体磷酸酯部分占据的结合部位区域以及充分考虑与不同小分子结合相关的 RNA 中广泛的构象异质性,强调了将计算机辅助药物设计方法应用于 RNA 所固有的挑战。虽然存在局限性,但本研究表明,SILCS-RNA 方法如何增强针对小分子的 RNA 药物发现工作。

相似文献

1
SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules.
J Chem Theory Comput. 2022 Sep 13;18(9):5672-5691. doi: 10.1021/acs.jctc.2c00381. Epub 2022 Aug 1.
4
Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach.
J Chem Inf Model. 2013 Dec 23;53(12):3384-98. doi: 10.1021/ci4005628. Epub 2013 Nov 25.
5
Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
J Phys Chem B. 2024 Aug 1;128(30):7362-7375. doi: 10.1021/acs.jpcb.4c03045. Epub 2024 Jul 20.
6
Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
J Chem Inf Model. 2015 Feb 23;55(2):407-20. doi: 10.1021/ci500691p. Epub 2015 Feb 6.
7
Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization.
J Chem Inf Model. 2019 Jun 24;59(6):3018-3035. doi: 10.1021/acs.jcim.9b00210. Epub 2019 May 8.
8
Assessing hERG1 Blockade from Bayesian Machine-Learning-Optimized Site Identification by Ligand Competitive Saturation Simulations.
J Chem Inf Model. 2020 Dec 28;60(12):6489-6501. doi: 10.1021/acs.jcim.0c01065. Epub 2020 Nov 16.
10
Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling.
J Comput Aided Mol Des. 2014 May;28(5):491-507. doi: 10.1007/s10822-014-9728-0. Epub 2014 Mar 8.

引用本文的文献

1
Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots.
J Chem Inf Model. 2024 Oct 14;64(19):7743-7757. doi: 10.1021/acs.jcim.4c01189. Epub 2024 Sep 16.
2
Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
J Phys Chem B. 2024 Aug 1;128(30):7362-7375. doi: 10.1021/acs.jpcb.4c03045. Epub 2024 Jul 20.
3
Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN.
Nat Commun. 2024 Jul 8;15(1):5725. doi: 10.1038/s41467-024-49638-7.
4
Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.
J Chem Theory Comput. 2024 Mar 12;20(5):1897-1911. doi: 10.1021/acs.jctc.4c00013. Epub 2024 Feb 28.
5
Binding free-energy landscapes of small molecule binder and non-binder to FMN riboswitch: All-atom molecular dynamics.
Biophys Physicobiol. 2023 Dec 13;20(4):e200047. doi: 10.2142/biophysico.bppb-v20.0047. eCollection 2023.
6
GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations.
J Comput Chem. 2023 Jul 30;44(20):1719-1732. doi: 10.1002/jcc.27121. Epub 2023 Apr 24.

本文引用的文献

1
Application of Site-Identification by Ligand Competitive Saturation in Computer-Aided Drug Design.
New J Chem. 2022 Jan 21;46(3):919-932. doi: 10.1039/d1nj04028f. Epub 2021 Nov 29.
3
Insights into Glucose-6-phosphate Allosteric Activation of β-Glucosidase A.
J Chem Inf Model. 2021 Apr 26;61(4):1931-1941. doi: 10.1021/acs.jcim.0c01450. Epub 2021 Apr 5.
4
Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation.
J Struct Biol. 2021 Mar;213(1):107703. doi: 10.1016/j.jsb.2021.107703. Epub 2021 Feb 9.
5
AnnapuRNA: A scoring function for predicting RNA-small molecule binding poses.
PLoS Comput Biol. 2021 Feb 1;17(2):e1008309. doi: 10.1371/journal.pcbi.1008309. eCollection 2021 Feb.
6
First small-molecule drug targeting RNA gains momentum.
Nat Biotechnol. 2021 Jan;39(1):6-8. doi: 10.1038/s41587-020-00788-1.
7
Assessing hERG1 Blockade from Bayesian Machine-Learning-Optimized Site Identification by Ligand Competitive Saturation Simulations.
J Chem Inf Model. 2020 Dec 28;60(12):6489-6501. doi: 10.1021/acs.jcim.0c01065. Epub 2020 Nov 16.
8
RLDOCK: A New Method for Predicting RNA-Ligand Interactions.
J Chem Theory Comput. 2020 Nov 10;16(11):7173-7183. doi: 10.1021/acs.jctc.0c00798. Epub 2020 Oct 23.
9
RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges.
Pharmacol Rev. 2020 Oct;72(4):862-898. doi: 10.1124/pr.120.019554.
10
PEARL-seq: A Photoaffinity Platform for the Analysis of Small Molecule-RNA Interactions.
ACS Chem Biol. 2020 Sep 18;15(9):2374-2381. doi: 10.1021/acschembio.0c00357. Epub 2020 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验