Yu Wenbo, Lakkaraju Sirish Kaushik, Raman E Prabhu, MacKerell Alexander D
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
J Comput Aided Mol Des. 2014 May;28(5):491-507. doi: 10.1007/s10822-014-9728-0. Epub 2014 Mar 8.
Database screening using receptor-based pharmacophores is a computer-aided drug design technique that uses the structure of the target molecule (i.e. protein) to identify novel ligands that may bind to the target. Typically receptor-based pharmacophore modeling methods only consider a single or limited number of receptor conformations and map out the favorable binding patterns in vacuum or with a limited representation of the aqueous solvent environment, such that they may suffer from neglect of protein flexibility and desolvation effects. Site-Identification by Ligand Competitive Saturation (SILCS) is an approach that takes into account these, as well as other, properties to determine 3-dimensional maps of the functional group-binding patterns on a target receptor (i.e. FragMaps). In this study, a method to use the FragMaps to automatically generate receptor-based pharmacophore models is presented. It converts the FragMaps into SILCS pharmacophore features including aromatic, aliphatic, hydrogen-bond donor and acceptor chemical functionalities. The method generates multiple pharmacophore hypotheses that are then quantitatively ranked using SILCS grid free energies. The pharmacophore model generation protocol is validated using three different protein targets, including using the resulting models in virtual screening. Improved performance and efficiency of the SILCS derived pharmacophore models as compared to published docking studies, as well as a recently developed receptor-based pharmacophore modeling method is shown, indicating the potential utility of the approach in rational drug design.
使用基于受体的药效团进行数据库筛选是一种计算机辅助药物设计技术,该技术利用靶分子(即蛋白质)的结构来识别可能与靶标结合的新型配体。通常,基于受体的药效团建模方法仅考虑单个或有限数量的受体构象,并在真空或有限的水性溶剂环境表示下描绘出有利的结合模式,因此它们可能会忽略蛋白质的灵活性和去溶剂化效应。通过配体竞争饱和进行位点识别(SILCS)是一种考虑到这些以及其他特性来确定靶标受体(即片段图谱)上官能团结合模式的三维图谱的方法。在本研究中,提出了一种使用片段图谱自动生成基于受体的药效团模型的方法。它将片段图谱转换为SILCS药效团特征,包括芳香、脂肪族、氢键供体和受体化学官能团。该方法生成多个药效团假设,然后使用SILCS无网格自由能进行定量排序。使用三个不同的蛋白质靶标对药效团模型生成协议进行了验证,包括在虚拟筛选中使用所得模型。结果表明,与已发表的对接研究以及最近开发的基于受体的药效团建模方法相比,SILCS衍生的药效团模型具有更高的性能和效率,表明该方法在合理药物设计中的潜在实用性。