Suppr超能文献

一种微生物对硫和甲烷的氧化作用。

Sulfur and methane oxidation by a single microorganism.

机构信息

Department of Biological Sciences and Biotechnology, Chungbuk National University, Seowon-Gu, Cheongju 28644, Republic of Korea.

Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-Zentrum für Umweltforschung GmbH, 04318 Leipzig, Germany.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2114799119. doi: 10.1073/pnas.2114799119. Epub 2022 Aug 1.

Abstract

Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic-anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, '' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox-rDsr pathway and the SI system. Strain HY1 employed the Calvin-Benson-Bassham cycle for CO fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic-anoxic interface environments.

摘要

自然湿地和人工湿地是大气温室气体甲烷的主要来源。好氧-缺氧界面处的甲烷氧化菌可减少湿地产生的甲烷排放,该区域是碳、硫和氮化合物强烈的氧化还原循环区。在此,我们报告了一株好氧甲烷氧化菌 HY1 的分离,该菌具有以前在任何甲烷氧化菌中都未发现的代谢能力。值得注意的是,HY1 菌株是第一个被证明能够有氧氧化甲烷和还原硫化合物以进行生长的细菌。基因组和蛋白质组分析表明,可溶性甲烷单加氧酶和 XoxF 型醇脱氢酶分别负责甲烷和甲醇的氧化。存在多种呼吸硫氧化途径,包括 Sox-rDsr 途径和 SI 系统。HY1 菌株在还原硫化合物上进行化能自养生长时,采用卡尔文-本森-巴斯姆循环进行 CO2 固定。蛋白质组和微量呼吸测定分析表明,在相应底物存在的情况下,甲烷和硫代硫酸盐的氧化代谢途径被诱导。因此,甲烷和硫代硫酸盐可以独立或同时被氧化。这种多功能细菌的发现表明,甲烷营养和硫营养在单个微生物中是兼容的,并支持好氧-缺氧界面环境中甲烷和硫循环的密切相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1094/9371685/35cf0a9dab39/pnas.2114799119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验