Merck Center for Catalysis at Princeton University, Princeton, NJ 08544.
Department of Chemistry, Princeton University, Princeton, NJ 08544.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2203027119. doi: 10.1073/pnas.2203027119. Epub 2022 Aug 1.
The elucidation of protein interaction networks is critical to understanding fundamental biology as well as developing new therapeutics. Proximity labeling platforms (PLPs) are state-of-the-art technologies that enable the discovery and delineation of biomolecular networks through the identification of protein-protein interactions. These platforms work via catalytic generation of reactive probes at a biological region of interest; these probes then diffuse through solution and covalently "tag" proximal biomolecules. The physical distance that the probes diffuse determines the effective labeling radius of the PLP and is a critical parameter that influences the scale and resolution of interactome mapping. As such, by expanding the degrees of labeling resolution offered by PLPs, it is possible to better capture the various size scales of interactomes. At present, however, there is little quantitative understanding of the labeling radii of different PLPs. Here, we report the development of a superresolution microscopy-based assay for the direct quantification of PLP labeling radii. Using this assay, we provide direct extracellular measurements of the labeling radii of state-of-the-art antibody-targeted PLPs, including the peroxidase-based phenoxy radical platform (269 ± 41 nm) and the high-resolution iridium-catalyzed µMap technology (54 ± 12 nm). Last, we apply these insights to the development of a molecular diffusion-based approach to tuning PLP resolution and introduce a new aryl-azide-based µMap platform with an intermediate labeling radius (80 ± 28 nm).
阐明蛋白质相互作用网络对于理解基础生物学和开发新疗法至关重要。邻近标记平台(PLP)是一种最先进的技术,可通过鉴定蛋白质-蛋白质相互作用来发现和描绘生物分子网络。这些平台通过在感兴趣的生物区域催化生成反应性探针来工作;然后这些探针在溶液中扩散并通过共价键“标记”邻近的生物分子。探针扩散的物理距离决定了 PLP 的有效标记半径,这是一个关键参数,影响着互作组图谱的规模和分辨率。因此,通过扩展 PLP 提供的标记分辨率,可以更好地捕捉互作组的各种大小尺度。然而,目前对于不同 PLP 的标记半径还缺乏定量理解。在这里,我们报告了一种基于超分辨率显微镜的测定方法的开发,用于直接定量 PLP 的标记半径。使用该测定方法,我们提供了基于超分辨率显微镜的测定方法,直接测量了最先进的抗体靶向 PLP 的标记半径,包括基于过氧化物酶的苯氧基自由基平台(269 ± 41nm)和高分辨率铱催化µMap 技术(54 ± 12nm)。最后,我们将这些见解应用于开发基于分子扩散的方法来调整 PLP 分辨率,并引入了一种新的基于芳基叠氮化物的µMap 平台,具有中等的标记半径(80 ± 28nm)。