Suppr超能文献

基于深度学习的胸部 X 光图像异常检测网络。

Deep Learning-Based Networks for Detecting Anomalies in Chest X-Rays.

机构信息

The University of Mashreq, Research Center, Baghdad, Iraq.

Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad 10021, Iraq.

出版信息

Biomed Res Int. 2022 Jul 23;2022:7833516. doi: 10.1155/2022/7833516. eCollection 2022.

Abstract

X-ray images aid medical professionals in the diagnosis and detection of pathologies. They are critical, for example, in the diagnosis of pneumonia, the detection of masses, and, more recently, the detection of COVID-19-related conditions. The chest X-ray is one of the first imaging tests performed when pathology is suspected because it is one of the most accessible radiological examinations. Deep learning-based neural networks, particularly convolutional neural networks, have exploded in popularity in recent years and have become indispensable tools for image classification. Transfer learning approaches, in particular, have enabled the use of previously trained networks' knowledge, eliminating the need for large data sets and lowering the high computational costs associated with this type of network. This research focuses on using deep learning-based neural networks to detect anomalies in chest X-rays. Different convolutional network-based approaches are investigated using the ChestX-ray14 database, which contains over 100,000 X-ray images with labels relating to 14 different pathologies, and different classification objectives are evaluated. Starting with the pretrained networks VGG19, ResNet50, and Inceptionv3, networks based on transfer learning are implemented, with different schemes for the classification stage and data augmentation. Similarly, an ad hoc architecture is proposed and evaluated without transfer learning for the classification objective with more examples. The results show that transfer learning produces acceptable results in most of the tested cases, indicating that it is a viable first step for using deep networks when there are not enough labeled images, which is a common problem when working with medical images. The ad hoc network, on the other hand, demonstrated good generalization with data augmentation and an acceptable accuracy value. The findings suggest that using convolutional neural networks with and without transfer learning to design classifiers for detecting pathologies in chest X-rays is a good idea.

摘要

X 射线图像有助于医学专业人员诊断和检测病理学。例如,在诊断肺炎、检测肿块,以及最近检测与 COVID-19 相关的病症时,X 射线图像非常重要。当怀疑有病理学问题时,胸部 X 射线是进行的首批影像学检查之一,因为它是最容易进行的放射学检查之一。基于深度学习的神经网络,特别是卷积神经网络,近年来在医学领域得到了广泛的应用,并成为图像分类不可或缺的工具。特别是,迁移学习方法使人们能够利用先前训练好的网络的知识,从而消除了对大型数据集的需求,并降低了与这种类型的网络相关的高计算成本。本研究专注于使用基于深度学习的神经网络来检测胸部 X 射线中的异常。使用 ChestX-ray14 数据库研究了不同的基于卷积网络的方法,该数据库包含超过 100,000 张带有 14 种不同病理学标签的 X 射线图像,并且评估了不同的分类目标。本研究从预训练网络 VGG19、ResNet50 和 Inceptionv3 开始,实现了基于迁移学习的网络,在分类阶段和数据增强方面采用了不同的方案。同样,还提出并评估了一种没有迁移学习的专用架构,用于具有更多示例的分类目标。结果表明,在大多数测试情况下,迁移学习都能产生可接受的结果,这表明当没有足够的标记图像时,迁移学习是使用深度网络的可行的第一步,这在处理医学图像时是一个常见的问题。另一方面,专用网络在进行数据增强和具有可接受的精度值的情况下表现出良好的泛化能力。研究结果表明,使用具有和不具有迁移学习的卷积神经网络设计用于在胸部 X 射线中检测病理学的分类器是一个不错的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e95/9338857/0f24b1afd910/BMRI2022-7833516.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验