Suppr超能文献

采用自动深度学习和基于优化的方法,利用 X 射线图像检测新型冠状病毒 COVID-19 疾病。

ADOPT: automatic deep learning and optimization-based approach for detection of novel coronavirus COVID-19 disease using X-ray images.

机构信息

Department of Computer Science, Government Bikram College of Commerce, Patiala, Punjab, India.

School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.

出版信息

J Biomol Struct Dyn. 2022 Aug;40(13):5836-5847. doi: 10.1080/07391102.2021.1875049. Epub 2021 Jan 21.

Abstract

In the hospital, because of the rise in cases daily, there are a small number of COVID-19 test kits available. For this purpose, a rapid alternative diagnostic choice to prevent COVID-19 spread among individuals must be implemented as an automatic detection method. In this article, the multi-objective optimization and deep learning-based technique for identifying infected patients with coronavirus using X-rays is proposed. J48 decision tree approach classifies the deep feature of corona affected X-ray images for the efficient detection of infected patients. In this study, 11 different convolutional neural network-based (CNN) models (AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet50, ResNet101, InceptionV3, InceptionResNetV2, DenseNet201 and XceptionNet) are developed for detection of infected patients with coronavirus pneumonia using X-ray images. The efficiency of the proposed model is tested using k-fold cross-validation method. Moreover, the parameters of CNN deep learning model are tuned using multi-objective spotted hyena optimizer (MOSHO). Extensive analysis shows that the proposed model can classify the X-ray images at a good accuracy, precision, recall, specificity and F1-score rates. Extensive experimental results reveal that the proposed model outperforms competitive models in terms of well-known performance metrics. Hence, the proposed model is useful for real-time COVID-19 disease classification from X-ray chest images.Communicated by Ramaswamy H. Sarma.

摘要

在医院中,由于每日病例的增加,COVID-19 检测试剂盒的数量有限。因此,必须实施一种快速的替代诊断选择,以防止 COVID-19 在个体之间传播。在本文中,提出了一种使用 X 射线识别冠状病毒感染患者的多目标优化和基于深度学习的技术。J48 决策树方法对受冠状病毒影响的 X 射线图像的深度特征进行分类,以有效地检测感染患者。在这项研究中,开发了 11 种不同的基于卷积神经网络(CNN)的模型(AlexNet、VGG16、VGG19、GoogleNet、ResNet18、ResNet50、ResNet101、InceptionV3、InceptionResNetV2、DenseNet201 和 XceptionNet),用于使用 X 射线图像检测冠状病毒肺炎感染患者。使用 k 折交叉验证方法测试了所提出模型的效率。此外,使用多目标斑点鬣狗优化器(MOSHO)调整了 CNN 深度学习模型的参数。广泛的分析表明,所提出的模型可以以较高的准确性、精度、召回率、特异性和 F1 分数对 X 射线图像进行分类。广泛的实验结果表明,在所提出的模型在基于知名性能指标的竞争模型中表现更好。因此,该模型可用于从 X 射线胸部图像实时分类 COVID-19 疾病。由 Ramaswamy H. Sarma 传达。

相似文献

6
Deep convolutional neural networks for COVID-19 automatic diagnosis.用于 COVID-19 自动诊断的深度卷积神经网络。
Microsc Res Tech. 2021 Nov;84(11):2504-2516. doi: 10.1002/jemt.23713. Epub 2021 Jun 14.
8
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.基于胸部 X 光图像的 COVID-19 分类深度学习算法。
Comput Math Methods Med. 2021 Nov 9;2021:9269173. doi: 10.1155/2021/9269173. eCollection 2021.

引用本文的文献

6

本文引用的文献

2
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.一种用于筛查2019冠状病毒病肺炎的深度学习系统。
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验