Department of Computer Science, Government Bikram College of Commerce, Patiala, Punjab, India.
School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.
J Biomol Struct Dyn. 2022 Aug;40(13):5836-5847. doi: 10.1080/07391102.2021.1875049. Epub 2021 Jan 21.
In the hospital, because of the rise in cases daily, there are a small number of COVID-19 test kits available. For this purpose, a rapid alternative diagnostic choice to prevent COVID-19 spread among individuals must be implemented as an automatic detection method. In this article, the multi-objective optimization and deep learning-based technique for identifying infected patients with coronavirus using X-rays is proposed. J48 decision tree approach classifies the deep feature of corona affected X-ray images for the efficient detection of infected patients. In this study, 11 different convolutional neural network-based (CNN) models (AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet50, ResNet101, InceptionV3, InceptionResNetV2, DenseNet201 and XceptionNet) are developed for detection of infected patients with coronavirus pneumonia using X-ray images. The efficiency of the proposed model is tested using k-fold cross-validation method. Moreover, the parameters of CNN deep learning model are tuned using multi-objective spotted hyena optimizer (MOSHO). Extensive analysis shows that the proposed model can classify the X-ray images at a good accuracy, precision, recall, specificity and F1-score rates. Extensive experimental results reveal that the proposed model outperforms competitive models in terms of well-known performance metrics. Hence, the proposed model is useful for real-time COVID-19 disease classification from X-ray chest images.Communicated by Ramaswamy H. Sarma.
在医院中,由于每日病例的增加,COVID-19 检测试剂盒的数量有限。因此,必须实施一种快速的替代诊断选择,以防止 COVID-19 在个体之间传播。在本文中,提出了一种使用 X 射线识别冠状病毒感染患者的多目标优化和基于深度学习的技术。J48 决策树方法对受冠状病毒影响的 X 射线图像的深度特征进行分类,以有效地检测感染患者。在这项研究中,开发了 11 种不同的基于卷积神经网络(CNN)的模型(AlexNet、VGG16、VGG19、GoogleNet、ResNet18、ResNet50、ResNet101、InceptionV3、InceptionResNetV2、DenseNet201 和 XceptionNet),用于使用 X 射线图像检测冠状病毒肺炎感染患者。使用 k 折交叉验证方法测试了所提出模型的效率。此外,使用多目标斑点鬣狗优化器(MOSHO)调整了 CNN 深度学习模型的参数。广泛的分析表明,所提出的模型可以以较高的准确性、精度、召回率、特异性和 F1 分数对 X 射线图像进行分类。广泛的实验结果表明,在所提出的模型在基于知名性能指标的竞争模型中表现更好。因此,该模型可用于从 X 射线胸部图像实时分类 COVID-19 疾病。由 Ramaswamy H. Sarma 传达。