Suppr超能文献

在新冠疫情时代利用胸部X光图像进行深度学习以检测和评估肺炎病例

Deep Learning on Chest X-ray Images to Detect and Evaluate Pneumonia Cases at the Era of COVID-19.

作者信息

Hammoudi Karim, Benhabiles Halim, Melkemi Mahmoud, Dornaika Fadi, Arganda-Carreras Ignacio, Collard Dominique, Scherpereel Arnaud

机构信息

Department of Computer Science, IRIMAS, Université de Haute-Alsace, 68100, Mulhouse, France.

Université de Strasbourg, Strasbourg, France.

出版信息

J Med Syst. 2021 Jun 8;45(7):75. doi: 10.1007/s10916-021-01745-4.

Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease with first symptoms similar to the flu. COVID-19 appeared first in China and very quickly spreads to the rest of the world, causing then the 2019-20 coronavirus pandemic. In many cases, this disease causes pneumonia. Since pulmonary infections can be observed through radiography images, this paper investigates deep learning methods for automatically analyzing query chest X-ray images with the hope to bring precision tools to health professionals towards screening the COVID-19 and diagnosing confirmed patients. In this context, training datasets, deep learning architectures and analysis strategies have been experimented from publicly open sets of chest X-ray images. Tailored deep learning models are proposed to detect pneumonia infection cases, notably viral cases. It is assumed that viral pneumonia cases detected during an epidemic COVID-19 context have a high probability to presume COVID-19 infections. Moreover, easy-to-apply health indicators are proposed for estimating infection status and predicting patient status from the detected pneumonia cases. Experimental results show possibilities of training deep learning models over publicly open sets of chest X-ray images towards screening viral pneumonia. Chest X-ray test images of COVID-19 infected patients are successfully diagnosed through detection models retained for their performances. The efficiency of proposed health indicators is highlighted through simulated scenarios of patients presenting infections and health problems by combining real and synthetic health data.

摘要

2019冠状病毒病(COVID-19)是一种传染病,其最初症状与流感相似。COVID-19最早出现在中国,并很快传播到世界其他地区,引发了2019-2020年的冠状病毒大流行。在许多情况下,这种疾病会导致肺炎。由于肺部感染可以通过X光图像观察到,本文研究了深度学习方法,用于自动分析胸部X光查询图像,希望为医疗专业人员提供精确工具,以筛查COVID-19并诊断确诊患者。在此背景下,从公开的胸部X光图像集中对训练数据集、深度学习架构和分析策略进行了实验。提出了定制的深度学习模型来检测肺炎感染病例,特别是病毒感染病例。假定在COVID-19疫情期间检测到的病毒性肺炎病例很可能为COVID-19感染。此外,还提出了易于应用的健康指标,用于根据检测到的肺炎病例估计感染状况并预测患者状态。实验结果表明,在公开的胸部X光图像集上训练深度学习模型以筛查病毒性肺炎具有可能性。通过保留性能良好的检测模型,成功诊断了COVID-19感染患者的胸部X光测试图像。通过结合真实和合成健康数据的患者感染和健康问题模拟场景,突出了所提出健康指标的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc7/8185498/7591caa1aba4/10916_2021_1745_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验