Suppr超能文献

脑缺血后重复经颅磁刺激:动物模型的机制。

Repetitive Transcranial Magnetic Stimulation of the Brain After Ischemic Stroke: Mechanisms from Animal Models.

机构信息

Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.

出版信息

Cell Mol Neurobiol. 2023 May;43(4):1487-1497. doi: 10.1007/s10571-022-01264-x. Epub 2022 Aug 2.

Abstract

Stroke is a common cerebrovascular disease with high morbidity, mortality, and disability worldwide. Post-stroke dysfunction is related to the death of neurons and impairment of synaptic structure, which results from cerebral ischemic damage. Currently, transcranial magnetic stimulation (TMS) techniques are available to provide clinically effective interventions and quantitative diagnostic and prognostic biomarkers. The development of TMS has been 40 years and a range of repetitive TMS (rTMS) protocols are now available to regulate neuronal plasticity in many neurological disorders, such as stroke, Parkinson disease, psychiatric disorders, Alzheimer disease, and so on. Basic studies in an animal model with ischemic stroke are significant for demonstrating potential mechanisms of neural restoration induced by rTMS. In this review, the mechanisms were summarized, involving synaptic plasticity, neural cell death, neurogenesis, immune response, and blood-brain barrier (BBB) disruption in vitro and vivo experiments with ischemic stroke models. Those findings can contribute to the understanding of how rTMS modulated function recovery and the exploration of novel therapeutic targets. The mechanisms of rTMS in treating ischemic stroke from animal models. rTMS can prompt synaptic plasticity by increasing NMDAR, AMPAR and BDNF expression; rTMS can inhibit pro-inflammatory cytokines TNF and facilitate the expression of anti-inflammatory cytokines IL-10 by shifting astrocytic phenotypes from A1 to A2, and shifting microglial phenotypes from M1 to M2; rTMS facilitated the release of angiogenesis-related factors TGFβ and VEGF in A2 astrocytes, which can contribute to vasculogenesis and angiogenesis; rTMS can suppress apoptosis by increasing Bcl-2 expression and inhibiting Bax, caspase-3 expression; rTMS can also suppress pyroptosis by decreasing caspase-1, IL-1β, ASC, GSDMD and NLRP1 expression. rTMS, repetitive transcranial magnetic stimulation; NMDAR, N-methyl-D-aspartic acid receptors; AMPAR: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; GSDMD: cleaved Caspase-1 cleaves Gasdermin D; CBF: cerebral blood flow.

摘要

脑卒中是一种常见的脑血管疾病,具有高发病率、高死亡率和高致残率,在全球范围内普遍存在。脑卒中后功能障碍与神经元死亡和突触结构损伤有关,这是由脑缺血损伤引起的。目前,经颅磁刺激(TMS)技术可提供临床有效的干预措施和定量诊断及预后生物标志物。TMS 的发展已有 40 年的历史,目前有一系列重复经颅磁刺激(rTMS)方案可用于调节多种神经系统疾病中的神经元可塑性,如脑卒中、帕金森病、精神障碍、阿尔茨海默病等。在缺血性脑卒中动物模型中的基础研究对于证明 rTMS 诱导神经修复的潜在机制具有重要意义。本综述总结了 rTMS 在体外和体内缺血性脑卒中模型中涉及突触可塑性、神经细胞死亡、神经发生、免疫反应和血脑屏障(BBB)破坏的潜在机制。这些发现有助于了解 rTMS 如何调节功能恢复,并探索新的治疗靶点。rTMS 治疗缺血性脑卒中的机制。rTMS 可以通过增加 N-甲基-D-天冬氨酸受体(NMDAR)、α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPA)和脑源性神经营养因子(BDNF)的表达来促进突触可塑性;rTMS 可以通过将星形胶质细胞的表型从 A1 转变为 A2,将小胶质细胞的表型从 M1 转变为 M2,从而抑制促炎细胞因子 TNF 的表达,并促进抗炎细胞因子 IL-10 的表达;rTMS 促进 A2 星形胶质细胞中与血管生成相关的因子 TGFβ和 VEGF 的释放,有助于血管生成;rTMS 通过增加 Bcl-2 的表达和抑制 Bax、caspase-3 的表达来抑制细胞凋亡;rTMS 还可以通过降低半胱天冬酶-1(caspase-1)、白细胞介素-1β(IL-1β)、凋亡相关斑点样蛋白(ASC)、Gasdermin D(GSDMD)和核苷酸结合寡聚化结构域样受体 1(NLRP1)的表达来抑制细胞焦亡。rTMS,重复经颅磁刺激;NMDAR,N-甲基-D-天冬氨酸受体;AMPA,α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体;BDNF,脑源性神经营养因子;VEGF,血管内皮生长因子;GSDMD,半胱天冬酶-1 切割 Gasdermin D;CBF,脑血流。

相似文献

1
Repetitive Transcranial Magnetic Stimulation of the Brain After Ischemic Stroke: Mechanisms from Animal Models.
Cell Mol Neurobiol. 2023 May;43(4):1487-1497. doi: 10.1007/s10571-022-01264-x. Epub 2022 Aug 2.
2
Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization.
Theranostics. 2020 Oct 26;10(26):12090-12110. doi: 10.7150/thno.51573. eCollection 2020.

引用本文的文献

3
Combined Analysis of Human and Experimental Rat Samples Identified Biomarkers for Ischemic Stroke.
Mol Neurobiol. 2025 Mar;62(3):3794-3812. doi: 10.1007/s12035-024-04512-x. Epub 2024 Sep 26.
5
Interference with glutamate antiporter system x enables post-hypoxic long-term potentiation in hippocampus.
Exp Physiol. 2024 Sep;109(9):1572-1592. doi: 10.1113/EP092045. Epub 2024 Aug 17.
6
Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research.
Mol Neurobiol. 2025 Jan;62(1):46-76. doi: 10.1007/s12035-024-04246-w. Epub 2024 May 31.
7
Current evidence of synaptic dysfunction after stroke: Cellular and molecular mechanisms.
CNS Neurosci Ther. 2024 May;30(5):e14744. doi: 10.1111/cns.14744.
8
Amygdala-Targeted Relief of Neuropathic Pain: Efficacy of Repetitive Transcranial Magnetic Stimulation in NLRP3 Pathway Suppression.
Mol Neurobiol. 2024 Nov;61(11):8904-8920. doi: 10.1007/s12035-024-04087-7. Epub 2024 Apr 4.
9
Novel Multi-Antioxidant Approach for Ischemic Stroke Therapy Targeting the Role of Oxidative Stress.
Biomedicines. 2024 Feb 23;12(3):501. doi: 10.3390/biomedicines12030501.

本文引用的文献

2
Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease.
J Neurosci Res. 2022 Apr;100(4):979-991. doi: 10.1002/jnr.25022. Epub 2022 Feb 7.
4
A New Method of Haemorrhagic Stroke Detection Deep Magnetic Induction Tomography.
Front Neurosci. 2021 May 5;15:659095. doi: 10.3389/fnins.2021.659095. eCollection 2021.
6
Cognitive and motor deficits contribute to longer braking time in stroke.
J Neuroeng Rehabil. 2021 Jan 13;18(1):7. doi: 10.1186/s12984-020-00802-2.
7
Opioids in Post-stroke Pain: A Systematic Review and Meta-Analysis.
Front Pharmacol. 2020 Nov 27;11:587050. doi: 10.3389/fphar.2020.587050. eCollection 2020.
9
LncRNA PART1 promotes cell proliferation and progression in non-small-cell lung cancer cells via sponging miR-17-5p.
J Cell Biochem. 2021 Apr;122(3-4):315-325. doi: 10.1002/jcb.29714. Epub 2020 Dec 27.
10
Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization.
Theranostics. 2020 Oct 26;10(26):12090-12110. doi: 10.7150/thno.51573. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验