Suppr超能文献

一石二鸟——对细胞分裂素氧化酶/脱氢酶()基因进行遗传操作以提高作物产量并改善干旱胁迫响应

Killing two birds with a single stone-genetic manipulation of cytokinin oxidase/dehydrogenase () genes for enhancing crop productivity and amelioration of drought stress response.

作者信息

Sharma Aman, Prakash Subasty, Chattopadhyay Debasis

机构信息

National Institute of Plant Genome Research, New Delhi, India.

出版信息

Front Genet. 2022 Jul 18;13:941595. doi: 10.3389/fgene.2022.941595. eCollection 2022.

Abstract

The development of high-yielding, bio-fortified, stress-tolerant crop cultivars is the need of the hour in the wake of increasing global food insecurity, abrupt climate change, and continuous shrinking of resources and landmass suitable for agriculture. The cytokinin group of phytohormones positively regulates seed yield by simultaneous regulation of source capacity (leaf senescence) and sink strength (grain number and size). Cytokinins also regulate root-shoot architecture by promoting shoot growth and inhibiting root growth. Cytokinin oxidase/dehydrogenase (CKX) are the only enzymes that catalyze the irreversible degradation of active cytokinins and thus negatively regulate the endogenous cytokinin levels. Genetic manipulation of genes is the key to improve seed yield and root-shoot architecture through direct manipulation of endogenous cytokinin levels. Downregulation of genes expressed in sink tissues such as inflorescence meristem and developing seeds, through reverse genetics approaches such as RNAi and CRISPR/Cas9 resulted in increased yield marked by increased number and size of grains. On the other hand, root-specific expression of genes resulted in decreased endogenous cytokinin levels in roots which in turn resulted in increased root growth indicated by increased root branching, root biomass, and root-shoot biomass ratio. Enhanced root growth provided enhanced tolerance to drought stress and improved micronutrient uptake efficiency. In this review, we have emphasized the role of as a genetic factor determining yield, micronutrient uptake efficiency, and response to drought stress. We have summarised the efforts made to increase crop productivity and drought stress tolerance in different crop species through genetic manipulation of family genes.

摘要

鉴于全球粮食不安全状况加剧、气候变化突然以及适合农业的资源和土地面积不断缩减,培育高产、生物强化、抗逆的作物品种已成为当务之急。细胞分裂素类植物激素通过同时调节源能力(叶片衰老)和库强度(籽粒数量和大小)来正向调节种子产量。细胞分裂素还通过促进地上部生长和抑制根系生长来调节根-冠结构。细胞分裂素氧化酶/脱氢酶(CKX)是唯一催化活性细胞分裂素不可逆降解的酶,因此负向调节内源细胞分裂素水平。对相关基因进行遗传操作是通过直接调控内源细胞分裂素水平来提高种子产量和根-冠结构的关键。通过RNAi和CRISPR/Cas9等反向遗传学方法下调在库组织(如花序分生组织和发育中的种子)中表达的相关基因,导致籽粒数量和大小增加,从而提高产量。另一方面,相关基因在根中的特异性表达导致根中内源细胞分裂素水平降低,进而导致根系生长增加,表现为根分支、根生物量和根-冠生物量比增加。根系生长增强提高了对干旱胁迫的耐受性,并提高了微量营养元素的吸收效率。在本综述中,我们强调了相关基因作为决定产量、微量营养元素吸收效率和对干旱胁迫响应的遗传因素的作用。我们总结了通过对相关基因家族进行遗传操作,在不同作物品种中提高作物生产力和干旱胁迫耐受性所做的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c97/9340367/75ebd5b22114/fgene-13-941595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验