Suppr超能文献

用于细菌生物膜的 3D GAN 图像合成和数据集质量评估

3D GAN image synthesis and dataset quality assessment for bacterial biofilm.

机构信息

C.L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.

School of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

出版信息

Bioinformatics. 2022 Sep 30;38(19):4598-4604. doi: 10.1093/bioinformatics/btac529.

Abstract

MOTIVATION

Data-driven deep learning techniques usually require a large quantity of labeled training data to achieve reliable solutions in bioimage analysis. However, noisy image conditions and high cell density in bacterial biofilm images make 3D cell annotations difficult to obtain. Alternatively, data augmentation via synthetic data generation is attempted, but current methods fail to produce realistic images.

RESULTS

This article presents a bioimage synthesis and assessment workflow with application to augment bacterial biofilm images. 3D cyclic generative adversarial networks (GAN) with unbalanced cycle consistency loss functions are exploited in order to synthesize 3D biofilm images from binary cell labels. Then, a stochastic synthetic dataset quality assessment (SSQA) measure that compares statistical appearance similarity between random patches from random images in two datasets is proposed. Both SSQA scores and other existing image quality measures indicate that the proposed 3D Cyclic GAN, along with the unbalanced loss function, provides a reliably realistic (as measured by mean opinion score) 3D synthetic biofilm image. In 3D cell segmentation experiments, a GAN-augmented training model also presents more realistic signal-to-background intensity ratio and improved cell counting accuracy.

AVAILABILITY AND IMPLEMENTATION

https://github.com/jwang-c/DeepBiofilm.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

数据驱动的深度学习技术通常需要大量的标记训练数据,才能在生物图像分析中得到可靠的解决方案。然而,嘈杂的图像条件和细菌生物膜图像中的高密度细胞使得 3D 细胞注释难以获得。或者,可以尝试通过合成数据生成进行数据扩充,但目前的方法无法生成逼真的图像。

结果

本文提出了一种生物图像合成和评估工作流程,应用于扩充细菌生物膜图像。利用具有不平衡循环一致性损失函数的 3D 循环生成对抗网络(GAN),从二进制细胞标签中合成 3D 生物膜图像。然后,提出了一种随机合成数据集质量评估(SSQA)度量标准,用于比较两个数据集中随机图像的随机补丁之间的统计外观相似性。SSQA 分数和其他现有图像质量度量标准都表明,所提出的 3D 循环 GAN 与不平衡损失函数一起,提供了一种可靠逼真的(根据平均意见得分衡量)3D 合成生物膜图像。在 3D 细胞分割实验中,GAN 增强的训练模型还呈现出更逼真的信号与背景强度比,并提高了细胞计数的准确性。

可用性和实现

https://github.com/jwang-c/DeepBiofilm。

补充信息

补充数据可在生物信息学在线获得。

相似文献

3
Image generation by GAN and style transfer for agar plate image segmentation.基于 GAN 和风格迁移的琼脂平板图像分割的图像生成。
Comput Methods Programs Biomed. 2020 Feb;184:105268. doi: 10.1016/j.cmpb.2019.105268. Epub 2019 Dec 17.
6
Active Appearance Model Induced Generative Adversarial Network for Controlled Data Augmentation.用于可控数据增强的主动外观模型诱导生成对抗网络
Med Image Comput Comput Assist Interv. 2019 Oct;11764:201-208. doi: 10.1007/978-3-030-32239-7_23. Epub 2019 Oct 10.
10
Synthetic Generation of 3D Microscopy Images using Generative Adversarial Networks.基于生成对抗网络的三维显微镜图像合成
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:549-552. doi: 10.1109/EMBC48229.2022.9871631.

本文引用的文献

3
A survey on applications of deep learning in microscopy image analysis.深度学习在显微镜图像分析中的应用调查。
Comput Biol Med. 2021 Jul;134:104523. doi: 10.1016/j.compbiomed.2021.104523. Epub 2021 May 29.
8
Biomedical image augmentation using Augmentor.使用 Augmentor 进行生物医学图像增强。
Bioinformatics. 2019 Nov 1;35(21):4522-4524. doi: 10.1093/bioinformatics/btz259.
10
Simulated single molecule microscopy with SMeagol.使用SMeagol进行模拟单分子显微镜技术
Bioinformatics. 2016 Aug 1;32(15):2394-5. doi: 10.1093/bioinformatics/btw109. Epub 2016 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验