Suppr超能文献

2001 - 2011年爱荷华州自行车与机动车碰撞事故的流行病学及空间分析

Epidemiology and spatial examination of bicycle-motor vehicle crashes in Iowa, 2001-2011.

作者信息

Hamann Cara, Peek-Asa Corinne, Lynch Charles F, Ramirez Marizen, Hanley Paul

机构信息

Injury Prevention Research Center, University of Iowa, 200 Newton Rd, 2186 WL, Iowa City, IA 52242, USA.

Department of Occupational and Environmental Health, University of Iowa College of Public Health, 105 River St, S143 CPHB, Iowa City, IA 52242, USA.

出版信息

J Transp Health. 2015;2(2):178-188. doi: 10.1016/j.jth.2014.08.006.

Abstract

PURPOSE

To identify how person, crash, environment, and population characteristics differ between bicycle-motor vehicle crashes that occur at intersections and non-intersections.

METHODS

The Iowa Department of Transportation crash database for the years 2001 through 2011 was used to identify bicycle-motor vehicle (BMV) crashes and associated person, crash, and environment characteristics. Population-level data were drawn from the 2010 U.S. Census and the 2010 American Community Survey. Descriptive statistics, GIS mapping, and multivariable logistic regression were used to examine factors associated with crash risk and crash location.

RESULTS

Compared to intersections, non-intersection BMV crashes had higher odds of involving young bicyclists (<10 years old; OR: 1.8, 95%CI: 1.2-2.6), location outside city limits (OR: 5.7, 95%CI: 3.9-8.3), with driver vision obscured (OR: 1.5, 95% CI: 1.2-1.8), reduced lighting on roadway (OR: 1.9, 95% CI: 1.5-2.4), and lower odds when the bicyclist (OR: 0.4, 95% CI: 0.3-0.6) or motorist (OR: 0.6, 95% CI: 0.4-0.8) failed to yield right of way.

CONCLUSIONS

Environmental factors, as well as developmental (age) and behavioral factors of bicycle-motor vehicle crashes vary by location (intersection/non-intersection). Results from this study can be used to tailor and target multiple intervention approaches, such as making infrastructure changes, increasing safety behavior among both motorists and bicyclists, and identifying which age groups and locations would most benefit from intervention.

摘要

目的

确定在十字路口和非十字路口发生的自行车与机动车碰撞事故中,人员、碰撞、环境和人口特征有何不同。

方法

使用爱荷华州交通部2001年至2011年的碰撞事故数据库来识别自行车与机动车(BMV)碰撞事故以及相关的人员、碰撞和环境特征。人口层面的数据来自2010年美国人口普查和2010年美国社区调查。采用描述性统计、地理信息系统绘图和多变量逻辑回归来研究与碰撞风险和碰撞地点相关的因素。

结果

与十字路口相比,非十字路口的BMV碰撞事故更有可能涉及年轻骑自行车者(<10岁;比值比:1.8,95%置信区间:1.2 - 2.6)、位于城市界限以外的地点(比值比:5.7,95%置信区间:3.9 - 8.3)、驾驶员视线受阻(比值比:1.5,95%置信区间:1.2 - 1.8)、道路照明不足(比值比:1.9,95%置信区间:1.5 - 2.4),而当骑自行车者(比值比:0.4,95%置信区间:0.3 - 0.6)或驾车者(比值比:0.6,95%置信区间:0.4 - 0.8)未让行时发生碰撞事故的可能性较低。

结论

自行车与机动车碰撞事故的环境因素以及发育(年龄)和行为因素因地点(十字路口/非十字路口)而异。本研究结果可用于定制和针对多种干预方法,例如进行基础设施改造、提高驾车者和骑自行车者的安全行为,以及确定哪些年龄组和地点将从干预中受益最大。

相似文献

2
Determinants of bicycle crashes at urban signalized intersections.城市信号交叉口自行车碰撞事故的影响因素
J Safety Res. 2023 Dec;87:132-142. doi: 10.1016/j.jsr.2023.09.011. Epub 2023 Sep 20.

本文引用的文献

9
Bicyclist injury severities in bicycle-motor vehicle accidents.自行车与机动车碰撞事故中骑车人的受伤严重程度
Accid Anal Prev. 2007 Mar;39(2):238-51. doi: 10.1016/j.aap.2006.07.002. Epub 2006 Sep 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验